ISSN: 1300 - 6525 E-ISSN: 2149 - 0880
kulak burun boğaz
ve baş boyun cerrahisi dergisi
http://dergi.kbb-bbc.org.tr
Kayıtlı İndeksler








ORIGINAL RESEARCH

Evaluation of Efferent Auditory System in Patients with Multiple Sclerosis Using Electrophysiological Methods
Efferent İşitsel Sistemin Multipl Sklerozlu Hastalarda Elektrofizyolojik Yöntemlerle Değerlendirilmesi
Received Date : 29 Jun 2024
Accepted Date : 17 Jul 2024
Available Online : 13 Aug 2024
Doi: 10.24179/kbbbbc.2024-104608 - Makale Dili: TR
Kulak Burun Boğaz ve Baş Boyun Cerrahisi Dergisi. 2024;32(3):118-27.
Copyright © 2020 by Turkey Association of Society of Ear Nose Throat and Head Neck Surgery. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
ABSTRACT
Objective: This study aims to evaluate auditory efferent system by medial olivocochlear (MOC) reflex on patients with multiple sclerosis (MS). Material and Methods: 53 participants with normal hearing (30 MS patients and 23 control group) was involved in the study. MS patients divided in two groups as “patients without definable brainstem lesion (Group 1, n=15)” and “patients with definable brainstem lesion (Group 2, n=15)” by cranial magnetic resonance imaging. All participants had pure tone audiometry, acoustic reflex test, transient evoked otoacoustic emission (TEOAE) amplitude measurements [with 80 ±4 dB peak equivalent sound pressure level (peSPL) click stimulus]. MOC pathway evaluated with contralateral suppresion measurement is made by 65 dB peSPL linear click stimulus with 50 dB SPL white noise on contralateral ear. Results: TEOAE signal to noise-ration (SNR) amplitudes on right ear on 2,000 and 2,800 Hz are found to be higher on control group than Group 2 (p<0.05). In the left ear, SNR amplitudes with 4,000 Hz in Group 1 and control group is higher than Group 2 (p<0.05). In terms of MOC reflex positivity ratio; there is no statistically meaningful difference (p>0.05). Mean suppresion in the control group’s left ears found to be higher than Group 2 left ears (p<0.05). Conclusion: Our results demonstrated TEOAE SNR amplitude reduction in MS patients with brainstem involvement. Even though no MOC reflex positivity ratio difference was found between groups, control groups suppression level on the left side found to be superior to Group 2. In MS patients, because of brainstem involvement; TEAOE SNR amplitudes and suppresion levels may decrease.
ÖZET
Amaç: Bu çalışmada, multipl skleroz (MS) hastalarında işitsel efferent sistemin mediyal olivokoklear (MOK) refleks ile değerlendirilmesi amaçlanmıştır. Gereç ve Yöntemler: Çalışmaya 30’u MS hastası ve 23’ü kontrol grubu olmak üzere işitmeleri normal olan 53 katılımcı dâhil edildi. MS hastaları kraniyal manyetik rezonans görüntülemesi bulgularına göre “saptanabilir beyin sapı lezyonu olmayanlar (Grup 1, n=15)” ve “saptanabilir beyin sapı lezyonu olanlar (Grup 2, n=15)” olarak iki gruba ayrıldı. Tüm katılımcılara; saf ses odyometrisi, akustik refleks testi ve transient evoked otoakustik emisyon (TEOAE) amplitüt ölçümü [80±4 dB peak equivalent sound pressure level (peSPL) klik uyaran kullanılarak] yapıldı. MOK refleksi, kontralateral akustik uyaran sonrası TEOAE’de supresyon düzeyi ölçülerek değerlendirildi. Kontralateral supresyon ölçümü 65 dB peSPL lineer klik uyaran ve kontralateral kulaktan 50 dB SPL beyaz gürültü kullanılarak 260 klik uyaran yanıtı averajlanarak yapıldı. Bulgular: Sağ kulakta TEOAE sinyal gürültü oranı [signal to noise-ration (SNR)] amplitütleri 2.000 ve 2.800 Hz’de kontrol grubunda Grup 2’den daha yüksek saptanmıştır (p<0,05). Sol kulakta ise Grup 1 ve kontrol grubunun 4.000 Hz’de elde edilen SNR amplitütleri Grup 2’den daha yüksek bulunmuştur (p<0,05). Gruplar arasında MOK refleksi pozitiflik oranları açısından istatistiksel olarak anlamlı bir fark saptanmamıştır (p>0,05). Sol kulaktaki ortalama supresyon miktarı kontrol grubunda Grup 2’den daha yüksek bulunmuştur (p<0,05). Sonuç: Beyin sapı tutulumu olan MS hastalarında TEOAE SNR amplitütlerinde azalma görülmüştür. Gruplar arasında MOK refleksi pozitiflik oranı açısından anlamlı bir fark saptanmasa da kontrol grubunun sol taraftaki supresyon seviyesi, Grup 2 hastalardan daha yüksek saptanmıştır. MS hastalarında beyin sapı tutulumu nedeniyle TEOAE SNR amplitütlerinde ve supresyon seviyesinde azalma olabilmektedir.
KAYNAKLAR
  1. Suga N, Gao E, Zhang Y, Ma X, Olsen JF. The corticofugal system for hearing: recent progress. Proc Natl Acad Sci U S A. 2000;97(22):11807-14. [Crossref]  [PubMed]  [PMC] 
  2. Kumar AU, Hegde M, Mayaleela. Perceptual learning of non-native speech contrast and functioning of the olivocochlear bundle. Int J Audiol. 2010;49(7):488-96. [Crossref]  [PubMed] 
  3. Guinan JJ Jr. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear. 2006;27(6):589-607. Erratum in: Ear Hear. 2007;28(1):129. [Crossref]  [PubMed] 
  4. Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009;8(3):280-91. [Crossref]  [PubMed] 
  5. Offenbacher H, Fazekas F, Schmidt R, Freidl W, Flooh E, Payer F, et al. Assessment of MRI criteria for a diagnosis of MS. Neurology. 1993;43(5):905-9. [Crossref]  [PubMed] 
  6. O'Connor P, Marchetti P, Lee L, Perera M. Evoked potential abnormality scores are a useful measure of disease burden in relapsing-remitting multiple sclerosis. Ann Neurol. 1998;44(3):404-7. [Crossref]  [PubMed] 
  7. Paludetti G, Ottaviani F, Gallai V, Tassoni A, Maurizi M. Auditory brainstem responses (ABR) in multiple sclerosis. Scand Audiol. 1985;14(1):27-34. [Crossref]  [PubMed] 
  8. Coelho A, Ceranić B, Prasher D, Miller DH, Luxon LM. Auditory efferent function is affected in multiple sclerosis. Ear Hear. 2007;28(5):593-604. [Crossref]  [PubMed] 
  9. Yilmaz ST, Sennaroğlu G, Sennaroğlu L, Köse SK. Effect of age on speech recognition in noise and on contralateral transient evoked otoacoustic emission suppression. J Laryngol Otol. 2007;121(11):1029-34. [Crossref]  [PubMed] 
  10. Stach BA, Delgado-Vilches G. Sudden hearing loss in multiple sclerosis: case report. J Am Acad Audiol. 1993;4(6):370-5. [PubMed] 
  11. Morgenstern C, Biermann E, Zangemeister WH. The efferent innervation of outer hair cells in humans: physiological investigations. Acta Otolaryngol. 1995;115(2):206-10. [Crossref]  [PubMed] 
  12. Cevette MJ, Robinette MS, Carter J, Knops JL. Otoacoustic emissions in sudden unilateral hearing loss associated with multiple sclerosis. J Am Acad Audiol. 1995;6(3):197-202. [PubMed] 
  13. Robinette MS, Facer GW. Evoked otoacoustic emissions in differential diagnosis: a case report. Otolaryngol Head Neck Surg. 1991;105(1):120-3. [Crossref]  [PubMed] 
  14. Nishida H, Tanaka Y, Okada M, Inoue Y. Evoked otoacoustic emissions and electrocochleography in a patient with multiple sclerosis. Ann Otol Rhinol Laryngol. 1995;104(6):456-62. [Crossref]  [PubMed] 
  15. Kaytancı E, Ozdamar OI, Acar GO, Tekin M. Evaluation of transiently evoked otoacoustic emissions and auditory brainstem responses in patients with multiple sclerosis. Ear Nose Throat J. 2016;95(10-11):E12-E17. [PubMed] 
  16. Di Mauro R, Di Girolamo S, Ralli M, de Vincentiis M, Mercuri N, Albanese M. Subclinical cochlear dysfunction in newly diagnosed relapsing-remitting multiple sclerosis. Mult Scler Relat Disord. 2019;33:55-60. [Crossref]  [PubMed] 
  17. Profant O, Jilek M, Bures Z, Vencovsky V, Kucharova D, Svobodova V, et al. Functional age-related changes within the human auditory system studied by audiometric examination. Front Aging Neurosci. 2019;11:26. [Crossref]  [PubMed]  [PMC] 
  18. Oliveira JR, Fernandes JC, Costa Filho OA. Age impact on the efferent system activities in cochlear mechanical properties in normal hearing individuals. Braz J Otorhinolaryngol. 2009;75(3):340-4. [Crossref]  [PubMed]  [PMC] 
  19. Kim S, Frisina DR, Frisina RD. Effects of age on contralateral suppression of distortion product otoacoustic emissions in human listeners with normal hearing. Audiol Neurootol. 2002;7(6):348-57. [Crossref]  [PubMed] 
  20. Engdahl B. Otoacoustic emissions in the general adult population of Nord-Trøndelag, Norway: I. Distributions by age, gender, and ear side. Int J Audiol. 2002;41(1):64-77. [Crossref]  [PubMed] 
  21. Pavlovcinová G, Jakubíková J, Trnovec T, Lancz K, Wimmerová S, Sovcíková E, et al. A normative study of otoacoustic emissions, ear asymmetry, and gender effect in healthy schoolchildren in Slovakia. Int J Pediatr Otorhinolaryngol. 2010;74(2):173-7. [Crossref]  [PubMed] 
  22. De Ceulaer G, Yperman M, Daemers K, Van Driessche K, Somers T, Offeciers FE, et al. Contralateral suppression of transient evoked otoacoustic emissions: normative data for a clinical test set-up. Otol Neurotol. 2001;22(3):350-5. [Crossref]  [PubMed] 
  23. Bergamaschi R. Prognostic factors in multiple sclerosis. Int Rev Neurobiol. 2007;79:423-47. [Crossref]  [PubMed] 
  24. Ceranic BJ, Prasher DK, Raglan E, Luxon LM. Tinnitus after head injury: evidence from otoacoustic emissions. J Neurol Neurosurg Psychiatry. 1998;65(4):523-9. [Crossref]  [PubMed]  [PMC] 
  25. Murdin L, Premachandra P, Davies R. Sensory dysmodulation in vestibular migraine: an otoacoustic emission suppression study. Laryngoscope. 2010;120(8):1632-6. [Crossref]  [PubMed] 
  26. Özgür A, Tüfekçi A, Yiğider AP, Terzi S, Kırbaş S, Coşkun ZÖ, et al. Contralateral suppression of otoacoustic emissions in migraine patients without vestibular involvement. ENT Updates. 2015;5(3):119-23. [Crossref] 
  27. Giraud AL, Collet L, Chéry-Croze S, Magnan J, Chays A. Evidence of a medial olivocochlear involvement in contralateral suppression of otoacoustic emissions in humans. Brain Res. 1995;705(1-2):15-23. [Crossref]  [PubMed] 
  28. Velenovsky DS, Glattke TJ. The effect of noise bandwidth on the contralateral suppression of transient evoked otoacoustic emissions. Hear Res. 2002;164(1-2):39-48. [Crossref]  [PubMed] 
  29. Bulut E, Yılmaz Ş, Taş M, Türkmen MT, Polat Z. Contralateral suppression of transient evoked otoacoustic emissions in children with fluency disorders. Journal of Academic Research in Medicine. 2017;7(3):144-8. [Crossref] 
  30. Eren E, Harman E, Arslanoğlu S, Önal K. Effects of Type 2 Diabetes on Otoacoustic Emissions and the Medial Olivocochlear Reflex. Otolaryngol Head Neck Surg. 2014;150(6):1033-9. [Crossref]  [PubMed] 
  31. Konomi U, Kanotra S, James AL, Harrison RV. Age related changes to the dynamics of contralateral DPOAE suppression in human subjects. J Otolaryngol Head Neck Surg. 2014;43(1):15. [Crossref]  [PubMed]  [PMC] 
  32. Parthasarathy TK. Aging and contralateral suppression effects on transient evoked otoacoustic emissions. J Am Acad Audiol. 2001;12(2):80-5. [Crossref]  [PubMed]