ISSN: 1300 - 6525 E-ISSN: 2149 - 0880
kulak burun boğaz
ve baş boyun cerrahisi dergisi
http://dergi.kbb-bbc.org.tr
Koşulsuz Destek Verenler

Kayıtlı İndeksler








ORIGINAL RESEARCH

Increased C-Peptide and Insulin Resistance are Important in the Development of Paralysis in Patients with Idiopathic Peripheral Facial Paralysis
İdiyopatik Periferik Fasiyal Paraliziye Sahip Hastalarda Artmış C-Peptid ve İnsülin Rezistansı Paralizi Gelişiminde Önemlidir
Received Date : 12 Mar 2022
Accepted Date : 31 May 2022
Available Online : 07 Jul 2022
Doi: 10.24179/kbbbbc.2022-89636 - Makale Dili: EN
KBB ve BBC Dergisi. 2022;30(3):146-53
Copyright © 2020 by Turkey Association of Society of Ear Nose Throat and Head Neck Surgery. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
ABSTRACT
Objective: To investigate the possible predictive role of the effects of insulin resistance (IR), connecting peptide (C-peptide) and glucose metabolism on paralysis in patients with nondiabetic “Bell’s palsy (BP)”. Material and Methods: The prospective-controlled study included 40 patients (mean age 39.95±11.74 years) and 22 healthy volunteers (average age 36.95±9.8 years). Clinical severity of BP was assessed using the House-Brackmann Facial Nerve Grading System. In addition to routine examinations, glucose, insulin, hemoglobin A1c (HbA1c), HbA1c-Système International (HbA1c-SI), and C-peptide levels were measured after at least 8 hours of fasting. IR was evaluated using homeostatic model assessment for IR (HOMA-IR) at a cut-off value of 2.7. Results: Fasting glucose, fasting insulin, fasting C-peptide, HbA1c, HbA1c-SI, and HOMA-IR values were significantly higher in the BP group (p<0.05 for all). Additionally, all blood parameters were positively correlated and mean fasting insulin, fasting C-peptide, and HOMA-IR values were significantly correlated with each other. Mean HOMA-IR value was significantly higher in the BP group compared to the control group (4.2±2.39 vs. 2.61±1.13) (p=0.004). Conclusion: The significant increase in HOMA-IR values in BP patients suggests that IR is a facilitative risk factor for BP. In addition, we consider that there may be a strong relationship between BP and increased all values. We also propose that these values can be highly useful and indispensable parameters in the pathophysiology of BP, administration of prophylactic precautions for prediabetes.
ÖZET
Amaç: Nondiyabetik idiyopatik periferik fasiyal paralizi [Bell’s palsy (BP)] gelişen hastalarda insülin direnci [insulin resistance (IR)], bağlayıcı peptid [connecting peptide (C-peptid)] ve glukoz metabolizmasının paralizi gelişimi üzerine olası etkilerinin araştırılması amaçlandı. Gereç ve Yöntemler: Prospektif, kontrollü çalışmaya nondiyabetik 40 BP hastası (ortalama yaş 39,95±11,74) ve sağlıklı 22 gönüllü (ortalama yaş 36,95±9,8) alındı. BP derecesi “House-Brackmann Facial Nerve Grading System” ile değerlendirildi. Hastaların rutin tetkikleri ile birlikte en az 8 saatlik açlık sonrası glukoz, insülin, hemoglobin A1c (HbA1c), “HbA1c-Système International (HbA1c-SI)” ve C-peptid seviyeleri ölçülerek değerlendirildi. IR’yi değerlendirmek için IR’nin homeostatik model değerlendirmesi [homeostatic model assessment (HOMA-IR)] >2,7 cut-off değeri göz önüne alınarak hesaplandı. Bulgular: Kontrol grubu ile kıyaslandığında açlık glukoz, açlık insülin, açlık C-peptid, HbA1c, HbA1c-SI ve HOMA-IR değerlerinin hepsi BP grubunda daha yüksek ve istatistiksel olarak daha anlamlı saptandı (p<0,05). Kan parametreleri birbirleri ile pozitif korelasyon gösterdi. Ortalama açlık insülini, açlık C-peptidi ve HOMA-IR değerleri birbirleriyle anlamlı şekilde ilişkiliydi. Ortalama HOMA-IR değeri BP grubunda kontrol grubuna göre anlamlı derecede yüksekti (sırasıyla 4,2±2,39, 2,61±1,13) (p=0,004). Sonuç: HOMA-IR değerlerinin BP hastalarında önemli ölçüde artması IR’nin BP için kolaylaştırıcı bir risk faktörü olduğunu gösterdi. Ayrıca artmış HOMA-IR, HbA1c, HbA1c- SI, C-peptid, açlık glukoz ve açlık insülin değerleri ile BP arasında güçlü bir patofizyolojik bir ilişki olabileceğini ve yine bu değerlerin prediyabet için profilaktik önlemlerin uygulanmasında oldukça yararlı ve vazgeçilmez parametreler olabileceğini düşünüyoruz.
KAYNAKLAR
  1. Spencer CR, Irving RM. Causes and management of facial nerve palsy. Br J Hosp Med (Lond). 2016;77(12):686-91. [Crossref]  [PubMed] 
  2. James DG. All that palsies is not Bell's. J R Soc Med. 1996;89(4):184-7. [Crossref]  [PubMed]  [PMC] 
  3. Holland NJ, Weiner GM. Recent developments in Bell's palsy. BMJ. 2004;329(7465):553-7. [Crossref]  [PubMed]  [PMC] 
  4. Finsterer J. Management of peripheral facial nerve palsy. Eur Arch Otorhinolaryngol. 2008;265(7):743-52. [Crossref]  [PubMed]  [PMC] 
  5. Monini S, Lazzarino AI, Iacolucci C, Buffoni A, Barbara M. Epidemiology of Bell's palsy in an Italian Health District: incidence and case-control study. Acta Otorhinolaryngol Ital. 2010;30(4):198. [PubMed]  [PMC] 
  6. McCaul JA, Cascarini L, Godden D, Coombes D, Brennan PA, Kerawala CJ. Evidence based management of Bell's palsy. Br J Oral Maxillofac Surg. 2014;52(5):387-91. [Crossref]  [PubMed] 
  7. Mooney T. Diagnosis and management of patients with Bell's palsy. Nurs Stand. 2013;28(14):44-9. [Crossref]  [PubMed] 
  8. Dvorin EL, Ebell MH. Short-term systemic corticosteroids: appropriate use in primary care. Am Fam Physician. 2020;101(2):89-94. [PubMed] 
  9. Bosco D, Plastino M, Bosco F, Consoli A, Labate A, Pirritano D, et al. Bell's palsy: a manifestation of prediabetes? Acta Neurol Scand. 2011;123(1):68-72. [Crossref]  [PubMed] 
  10. House JW, Brackmann DE. Facial nerve grading system. Otolaryngol Head Neck Surg. 1985;93(2):146-7. [Crossref]  [PubMed] 
  11. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157-63. Erratum in: Lancet. 2004;363(9412):902. [Crossref]  [PubMed] 
  12. Mattox DE. Clinical disorders of the facial nerve. In: Flint PW, Haughey BH, Lund VJ, Niparko JK, Robbins KT, Thomas JR, Lesperance MM, eds. Cummings Otolaryngology: Head- Neck Surgery. 6th ed. Philadelphia, USA: Mosby Elsevier; 2015. p.2617-28. [Link] 
  13. Riga M, Kefalidis G, Danielides V. The role of diabetes mellitus in the clinical presentation and prognosis of Bell palsy. J Am Board Fam Med. 2012;25(6):819-26. [Crossref]  [PubMed] 
  14. Zhang W, Xu L, Luo T, Wu F, Zhao B, Li X. The etiology of Bell's palsy: a review. J Neurol. 2020;267(7):1896-905. [Crossref]  [PubMed]  [PMC] 
  15. Korczyn AD. Bell's palsy and diabetes mellitus. Lancet. 1971;1(7690): 108-9. [Crossref]  [PubMed] 
  16. Sugimoto K, Shoji M, Yasujima M, Suda T, Yagihashi S. Peripheral nerve endoneurial microangiopathy and necrosis in rats with insulinoma. Acta Neuropathol. 2004;108(6):503-14. [Crossref]  [PubMed] 
  17. Singleton JR, Smith AG, Russell JW, Feldman EL. Microvascular complications of impaired glucose tolerance. Diabetes. 2003;52(12):2867-73. [Crossref]  [PubMed] 
  18. Gilden DH. Clinical practice. Bell's Palsy. N Engl J Med. 2004;351(13):1323-31. [Crossref]  [PubMed] 
  19. Smith AG, Singleton JR. Impaired glucose tolerance and neuropathy. Neurologist. 2008;14(1):23-9. [Crossref]  [PubMed] 
  20. Smith AG, Singleton JR. The diagnostic yield of a standardized approach to idiopathic sensory-predominant neuropathy. Arch Intern Med. 2004;164(9):1021-5. [Crossref]  [PubMed] 
  21. Seong J, Kang JY, Sun JS, Kim KW. Hypothalamic inflammation and obesity: a mechanistic review. Arch Pharm Res. 2019;42(5):383-92. [Crossref]  [PubMed] 
  22. Brown JC, Harhay MO, Harhay MN. Anthropometrically predicted visceral adipose tissue and blood-based biomarkers: a cross-sectional analysis. Eur J Nutr. 2018;57(1):191-8. [Crossref]  [PubMed]  [PMC] 
  23. Deacon CF. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol (Lausanne). 2019;10:80. Erratum in: Front Endocrinol (Lausanne). 2019;10:275. [Crossref]  [PubMed]  [PMC] 
  24. Kim B, Feldman EL. Insulin resistance in the nervous system. Trends Endocrinol Metab. 2012;23(3):133-41. [Crossref]  [PubMed]  [PMC] 
  25. Hossan T, Kundu S, Alam SS, Nagarajan S. Epigenetic modifications associated with the pathogenesis of type 2 diabetes mellitus. Endocr Metab Immune Disord Drug Targets. 2019;19(6):775-86. [Crossref]  [PubMed] 
  26. Bothou C, Beuschlein F, Spyroglou A. Links between aldosterone excess and metabolic complications: A comprehensive review. Diabetes Metab. 2020;46(1):1-7. [Crossref]  [PubMed] 
  27. Freeman AM, Pennings N. Insulin Resistance. 2021. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. [PubMed] 
  28. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487-95. [Crossref]  [PubMed] 
  29. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. [Crossref]  [PubMed] 
  30. Karagöz T, Bayir Ö, Çadalli Tatar E, Çakal E, Özdek A, Keseroğlu K, et al. Prognostic role of homeostasis model assessment and oral glucose tolerance test in nondiabetic patients with Bell's palsy. Turk J Med Sci. 2020;50(2):405-10. [Crossref]  [PubMed]  [PMC] 
  31. Özer G. The effect of insulin resistance on the House-Brackmann grade of facial paralysis in patients with Bell's palsy. J Surg Med. 2018;2(2):114-7. [Crossref] 
  32. Akintoye OO, Owoyele BV, Fabunmi OA, Raimi TH, Oniyide AA, Akintoye AO, et al. Diabetic neuropathy is associated with increased pain perception, low serum beta-endorphin and increase insulin resistance among Nigerian cohorts in Ekiti State. Heliyon. 2020;6(7):e04377. [Crossref]  [PubMed]  [PMC] 
  33. Leighton E, Sainsbury CA, Jones GC. A practical review of c-peptide testing in diabetes. Diabetes Ther. 2017;8(3):475-87. [Crossref]  [PubMed]  [PMC] 
  34. Venugopal SK, Mowery ML, Jialal I. C Peptide. 2020. In: StatPearls [Internet]. Treasure Island. (FL): StatPearls Publishing; 2021. [Link] 
  35. Yosten GL, Maric-Bilkan C, Luppi P, Wahren J. Physiological effects and therapeutic potential of proinsulin C-peptide. Am J Physiol Endocrinol Metab. 2014;307(11):E955-68. [Crossref]  [PubMed]  [PMC] 
  36. Bhatt MP, Lim YC, Kim YM, Ha KS. C-peptide activates AMPKα and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes. Diabetes. 2013;62(11):3851-62. [Crossref]  [PubMed]  [PMC] 
  37. Luppi P, Cifarelli V, Tse H, Piganelli J, Trucco M. Human C-peptide antagonises high glucose-induced endothelial dysfunction through the nuclear factor-kappaB pathway. Diabetologia. 2008;51(8):1534-43. [Crossref]  [PubMed] 
  38. Jones GR, Barker G, Goodall I, Schneider HG, Shephard MD, Twigg SM. Change of HbA1c reporting to the new SI units. Med J Aust. 2011;195(1):45-6. [Crossref]  [PubMed] 
  39. Kahlon AS, Pathak R. Patterns of glycemic control using glycosylated hemoglobin in diabetics. J Pharm Bioallied Sci. 2011;3(3):324-8. [Crossref]  [PubMed]  [PMC] 
  40. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36 Suppl 1(Suppl 1):S67-74. [Crossref]  [PubMed]  [PMC] 
  41. Stino AM, Smith AG. Peripheral neuropathy in prediabetes and the metabolic syndrome. J Diabetes Investig. 2017;8(5):646-55. [Crossref]  [PubMed]  [PMC] 
  42. Feldman EL, Russell JW, Sullivan KA, Golovoy D. New insights into the pathogenesis of diabetic neuropathy. Curr Opin Neurol. 1999;12(5):553-63. [Crossref]  [PubMed]