ISSN: 1300 - 6525 E-ISSN: 2149 - 0880
kulak burun boğaz
ve baş boyun cerrahisi dergisi
http://dergi.kbb-bbc.org.tr
Koşulsuz Destek Verenler

Kayıtlı İndeksler








REVIEW ARTICLES

Obstructive Sleep Apnea and Circadian Rhythms
Obstrüktif Uyku Apnesi ve Sirkadiyen Ritimler
Received Date : 23 May 2023
Accepted Date : 08 Jun 2023
Available Online : 13 Jun 2023
Doi: 10.24179/kbbbbc.2023-98095 - Makale Dili: EN
KBB ve BBC Dergisi. 2023;31(3):179-88
Copyright © 2020 by Turkey Association of Society of Ear Nose Throat and Head Neck Surgery. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
ABSTRACT
Obstructive sleep apnea (OSA) is a sleep disorder characterized by recurrent episodes of partial or complete obstruction of the upper airway during sleep. Circadian rhythms are natural biological rhythms that follow a 24-hour cycle and are synchronized with external cues, primarily the alternating patterns of light and darkness. The relationship between sleep apnea and circadian rhythms is complex and multifaceted. Disruptions in circadian rhythms can impact sleep quality and overall sleep-wake regulation. In the case of sleep apnea, the recurrent episodes of partial or complete obstruction of the upper airway during sleep can lead to disruptions in the normal sleep pattern. Sleep fragmentation and sleep apnea-related factors, such as intermittent hypoxia and oxidative stress, can directly affect the molecular and cellular mechanisms underlying circadian rhythms. Clinical and basic research studies have provided further evidence of the relationship between circadian rhythm and OSA. These studies highlight the importance of the circadian clock in regulating breathing, metabolism, and hormone secretion, the impact of OSA on melatonin secretion, blood pressure, and glucose metabolism, and propose it as a potential therapeutic target for sleep apnea and associated metabolic disorders. Understanding the relationship between OSA and circadian rhythms is important for managing and treating sleep apnea and its associated comorbidities. This review paper explores the molecular and systemic aspects of the circadian rhythm, their relationship with OSA, and the potential implications for disease development and treatment in literature highlights.
ÖZET
Obstrüktif uyku apnesi [obstructive sleep apnea (OSA)], uyku sırasında üst solunum yollarının kısmi veya tam tıkanıklığına bağlı olarak tekrarlayan epizodlardan oluşan bir uyku bozukluğudur. Sirkadiyen ritimler, doğal biyolojik ritimlerdir ve 24 saatlik bir döngüyü takip ederler. Bu ritimler, dış çevre faktörleri ile özellikle ışık ve karanlık arasındaki değişimlerle senkronize olurlar. OSA ve sirkadiyen ritimler arasındaki ilişki karmaşık ve çok yönlüdür. Sirkadiyen ritimlerin bozulması, uyku kalitesini ve genel uyku-uyanıklık düzenini etkileyebilir. Uyku apnesi durumunda, uyku sırasında üst solunum yollarının tekrarlayan tıkanma epizodları normal uyku düzenini bozabilir. Uyku parçalanması ve uyku apnesine bağlı faktörler, örneğin aralıklı hipoksi durumu ve altta yatan oksidatif stres, sirkadiyen ritimlerin temeldeki moleküler ve hücresel mekanizmalarını doğrudan etkileyebilir. Klinik ve temel araştırmalar, sirkadiyen ritim ile OSA arasındaki ilişki hakkında çeşitli bulgular ortaya koymuştur. Bu çalışmalar; solunum, metabolizma ve hormon salgısı düzenlemesinde sirkadiyen ritmin önemini, OSA’nın melatonin salgısı, kan basıncı ve glukoz metabolizması üzerindeki etkisini vurgulamaktadır. Ayrıca bu çalışmalar, sirkadiyen ritmi, uyku apnesi ve ilişkili metabolik bozukluklar için potansiyel bir terapötik hedef olarak önermektedir. OSA ve sirkadiyen ritimler arasındaki ilişkinin anlaşılması, uyku apnesi ve ilişkili komorbiditelerin yönetimi ve tedavisi açısından önemlidir. Bu derleme makalesi, sirkadiyen ritmin moleküler ve sistemik yönlerini, OSA ile ilişkisini, hastalık gelişimi ve tedavisi açısından potansiyel sonuçları literatür eşliğinde araştırmaktadır.
KAYNAKLAR
  1. Takahashi JS. Molecular components of the circadian clock in mammals. Di- abetes Obes Metab. 2015;17 Suppl 1(0 1):6-11. [Crossref]  [PubMed]  [PMC] 
  2. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328(17):1230-5. [Crossref]  [PubMed] 
  3. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006-14. [Crossref]  [PubMed]  [PMC] 
  4. Almeneessier AS, BaHammam AA, Alzoghaibi M, et.al. The effects of diurnal intermittent fasting on proinflammatory cytokine levels while controlling for sleep/wake pattern, meal composition and energy expenditure. PLoS One. 2019;14(12):e0226034. [Crossref]  [PubMed]  [PMC] 
  5. Buhr ED, Takahashi JS. Molecular components of the mammalian circadian clock. In: Kramer A, Merrow M, eds. Handbook of Experimental Pharmacol- ogy. Vol 217. Berlin Heidelberg: Springer; 2013. p.3-27. [Crossref]  [PubMed]  [PMC] 
  6. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014;111(45):16219-24. [Crossref]  [PubMed]  [PMC] 
  7. Panda S, Hogenesch JB. It's all in the timing: many clocks, many outputs. J Biol Rhythms. 2004;19(5):374-87. [Crossref]  [PubMed] 
  8. Fagiani F, Di Marino D, Romagnoli A, et.al Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther. 2022;7(1):41. [Crossref]  [PubMed]  [PMC] 
  9. Gharib SA, Seiger AN, Hayes AL et.al Treatment of obstructive sleep apnea alters cancer-associated transcriptional signatures in circulating leukocytes. Sleep. 2014 Apr 1;37(4):709-14, 714A-714T. [Crossref]  [PubMed]  [PMC] 
  10. Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A. 2008;105(3):1044-9. [Crossref]  [PubMed]  [PMC] 
  11. Drager LF, Jun JC, Polotsky VY. Metabolic consequences of intermittent hy- poxia: relevance to obstructive sleep apnea. Best Pract Res Clin Endocrinol Metab. 2010;24(5):843-51. [Crossref]  [PubMed]  [PMC] 
  12. Zhang Y, Kornhauser JM, Zee PC, et.al. Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, fos expression and CREB phosphorylation in the hamster suprachiasmatic nucleus. Neuroscience.1996;70(4):95161. [Crossref]  [PubMed] 
  13. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tis- sue circadian clock. Proc Natl Acad Sci U S A. 2008;105(39):15172-7. [Crossref]  [PubMed]  [PMC] 
  14. Aguilar-Arnal L, Sassone-Corsi P. The circadian epigenome: how metabolism talks to chromatin remodeling. Curr Opin Cell Biol. 2013;25(2):170-6. [Crossref]  [PubMed]  [PMC] 
  15. Lo Martire V, Caruso D, Palagini L. et.al Stress & sleep: A relationship lasting a lifetime. Neurosci Biobehav Rev. 2020;117:65-77. [Crossref]  [PubMed] 
  16. Chen H. Circadian rhythms might be the key joint role in intricate effects among metabolic syndrome, obstructive sleep apnea, and hypertension. J Clin Hypertens (Greenwich). 2018;20(10):1551-2. [Crossref]  [PubMed]  [PMC] 
  17. Koren D, Dumin M, Gozal D. Role of sleep quality in the metabolic syndrome. Diabetes Metab Syndr Obes. 2016;9:281-310. [Crossref]  [PubMed]  [PMC] 
  18. Almendros I, Gozal D. Intermittent hypoxia and cancer: undesirable bed part- ners? Respir Physiol Neurobiol. 2018;256:79-86. [Crossref]  [PubMed] 
  19. Kang HS, Kwon HY, Kim IK, Ban WH, Kim SW, Kang HH, Yeo CD, Lee SH. Intermittent hypoxia exacerbates tumor progression in a mouse model of lung cancer. Sci Rep. 2020;10(1):1854. [Crossref]  [PubMed]  [PMC] 
  20. Buxton OM, Cain SW, O'Connor SP, Porter JH, Duffy JF, Wang W, et al. Ad- verse metabolic consequences in humans of prolonged sleep restriction com- bined with circadian disruption. Sci Transl Med. 2012;4(129):129ra43. [Crossref]  [PubMed]  [PMC] 
  21. Peschke E, Mühlbauer E. New evidence for a role of melatonin in glucose regulation. Best Pract Res Clin Endocrinol Metab. 2010;24(5):829-41. [Crossref]  [PubMed] 
  22. Tang B, Bai Y, Zhao J, Yang H, et.al The Severity of Obstructive Sleep Apnea Increases the Risk of Arteriosclerosis. Rev Cardiovasc Med. 2022;23(3):94. [Crossref]  [PubMed] 
  23. Cajochen C, Kräuchi K, Wirz-Justice A. Role of melatonin in the regulation of human circadian rhythms and sleep. Journal of Sleep Research. 2018;27:e12620. [PubMed] 
  24. Makarem N, Alcántara C, Williams N, et.al. Effect of Sleep Disturbances on Blood Pressure. Hypertension. 2021;77(4):10361046. [Crossref]  [PubMed]  [PMC] 
  25. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687-98. [Crossref]  [PubMed]  [PMC] 
  26. Baran R, Grimm D, Infanger M, Wehland M. The Effect of Continuous Positive Airway Pressure Therapy on Obstructive Sleep Apnea-Related Hypertension. Int J Mol Sci. 202;22(5):2300. [Crossref]  [PubMed]  [PMC] 
  27. Iftikhar IH, Valentine CW, Bittencourt LR, Cohen DL, Fedson AC, Gíslason T, Penzel T, Phillips CL, Yu-sheng L, Pack AI, Magalang UJ. Effects of continuous positive airway pressure on blood pressure in patients with resistant hypertension and obstructive sleep apnea: a meta-analysis. J Hypertens. 2014;32(12):2341-50; discussion 2350. [Crossref]  [PubMed]  [PMC] 
  28. Malik JA, Masoodi SR, Shoib S. Obstructive sleep apnea in Type 2 diabetes and impact of continuous positive airway pressure therapy on glycemic control. Indian J Endocrinol Metab. 2017;21(1):106-12. [Crossref]  [PubMed]  [PMC] 
  29. Khan SU, Duran CA, Rahman H, Lekkala M, Saleem MA, Kaluski E. A meta-analysis of continuous positive airway pressure therapy in prevention of cardiovascular events in patients with obstructive sleep apnoea. Eur Heart J. 2018;39(24):2291-7. [Crossref]  [PubMed] 
  30. Serin Y, Acar Tek N. Effect of Circadian Rhythm on Metabolic Processes and the Regulation of Energy Balance. Ann Nutr Metab. 2019;74(4):322-30. [Crossref]  [PubMed] 
  31. Kolker DE, Vitaterna MH, Fruechte EM, Takahashi JS, Turek FW. Effects of age on circadian rhythms are similar in wild-type and heterozygous Clock mutant mice. Neurobiol Aging. 2004;25(4):517-23. [Crossref]  [PubMed]  [PMC] 
  32. Koritala BSC, Lee YY, Bhadri SS, et.al Intermittent Hypoxia Alters the Circadian Expression of Clock Genes in Mouse Brain and Liver. Genes (Basel). 2021;12(10):1627. [Crossref]  [PubMed]  [PMC] 
  33. Koritala BSC, Lee YY, Gaspar LS, et.al Obstructive sleep apnea in a mouse model is associated with tissue-specific transcriptomic changes in circadian rhythmicity and mean 24-hour gene expression. PLoS Biol. 2023;21(5):e3002139. [Crossref]  [PubMed]  [PMC] 
  34. Potter GD, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures. Endocr Rev. 2016;37(6):584-608. [Crossref]  [PubMed]  [PMC] 
  35. Czeisler CA, Klerman EB. Circadian and sleep-dependent regulation of hor- mone release in humans. Recent Prog Horm Res. 1999;54:97-130; discus- sion 130-2. [PubMed] 
  36. Mousavi SS, Shohrati M, Vahedi E, Abdollahpour-Alitappeh M, Panahi Y. Effect of Melatonin Administration on Sleep Quality in Sulfur Mustard Exposed Patients with Sleep Disorders. Iran J Pharm Res. 2018;17(Suppl):136-44. [PubMed]  [PMC] 
  37. Hardeland R. Tasimelteon, a melatonin agonist for the treatment of insomnia and circadian rhythm sleep disorders. Curr Opin Investig Drugs. 2009;10(7):691-701. [PubMed] 
  38. Hu X, Li J, Wang X, Liu H, Wang T, Lin Z, Xiong N. Neuroprotective Effect of Melatonin on Sleep Disorders Associated with Parkinson's Disease. Antioxidants (Basel). 2023;12(2):396. [Crossref]  [PubMed]  [PMC] 
  39. Han AH, Burroughs CR, Falgoust EP, Hasoon J, Hunt G, Kakazu J, Lee T, Kaye AM, Kaye AD, Ganti L. Suvorexant, a Novel Dual Orexin Receptor Antagonist, for the Management of Insomnia. Health Psychol Res. 2023;10(5):67898. [Crossref]  [PubMed]  [PMC] 
  40. Patil SP, Ayappa IA, Caples SM, Kimoff RJ, Patel SR, Harrod CG. Treatment of Adult Obstructive Sleep Apnea With Positive Airway Pressure: An American Academy of Sleep Medicine Systematic Review, Meta-Analysis, and GRADE Assessment. J Clin Sleep Med. 2019;15(2):301-34. [Crossref]  [PubMed]  [PMC] 
  41. Ramkumar V, Mukherjea D, Dhukhwa A, Rybak LP. Oxidative Stress and Inflammation Caused by Cisplatin Ototoxicity. Antioxidants (Basel). 2021;10(12):1919. [Crossref]  [PubMed]  [PMC] 
  42. Solmaz F, Ekim B, Simsek A. Does Obstructive Sleep Apnea Syndrome Have Negative Effects on Hearing? Iran J Otorhinolaryngol. 2023;35(126):13-20. [PubMed]  [PMC] 
  43. Cheung ICW, Thorne PR, Hussain S, Neeff M, Sommer JU. The relationship between obstructive sleep apnea with hearing and balance: A scoping review. Sleep Med. 2022;95:55-75. [Crossref]  [PubMed] 
  44. Wang C, Xu F, Chen M, et.al. Association of Obstructive Sleep Apnea-Hypopnea Syndrome with hearing loss: A systematic review and meta-analysis. Front Neurol. 2022;13:1017982. [Crossref]  [PubMed]  [PMC] 
  45. Yang CH, Hwang CF, Tsai NW, Yang MY. Expression of circadian clock genes in leukocytes of patients with Meniere's disease. Laryngoscope Investig Otolaryngol. 2022;7(2):584-91. [Crossref]  [PubMed]  [PMC] 
  46. Park DJ, Ha S, Choi JS, Lee SH, Park JE, Seo YJ. Induced Short-Term Hearing Loss due to Stimulation of Age-Related Factors by Intermittent Hypoxia, High-Fat Diet, and Galactose Injection. Int J Mol Sci. 2020;21(19):7068. [Crossref]  [PubMed]  [PMC] 
  47. Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia--revisited--the bad ugly and good: implications to the heart and brain. Sleep Med Rev. 2015;20:27-45. [Crossref]  [PubMed] 
  48. Trevino M, Lobarinas E, Maulden AC, Heinz MG. The chinchilla animal model for hearing science and noise-induced hearing loss. J Acoust Soc Am. 2019 Nov;146(5):3710. [Crossref]  [PubMed]  [PMC] 
  49. Jain RK, Pingle SK, Tumane RG, et.al. Cochlear Proteins Associated with Noise-induced Hearing Loss: An Update. Indian J Occup Environ Med. 2018;22(2):60-73. [Crossref]  [PubMed]  [PMC] 
  50. Li Y, Wang X, Cui J, Ren J, Xin Z, Chen D. Increasing obstructive sleep apnea risk is associated with hearing impairment in middle-aged Chinese men-A cross-sectional study. PLoS One. 2022;17(5):e0268412. [Crossref]  [PubMed]  [PMC] 
  51. Shirahama R, Tanigawa T, Ida Y, Fukuhisa K, Tanaka R, Tomooka K, Lan FY, Ikeda A, Wada H, Kales SN. Long-term effect of continuous positive airway pressure therapy on blood pressure in patients with obstructive sleep apnea. Sci Rep. 2021;11(1):19101. [Crossref]  [PubMed]  [PMC] 
  52. Gallina S, Dispenza F, Kulamarva G, Riggio F, Speciale R. Obstructive sleep apnoea syndrome (OSAS): effects on the vestibular system. Acta Otorhinolaryngol Ital. 2010 Dec;30(6):281-4. [PubMed]  [PMC] 
  53. Andrade Junior MC, Stefanini R, et.al. Individuals with peripheral vestibulopathy and poor quality of sleep are at a higher risk for falls. Braz J Otorhinolaryngol. 2021;87(4):440-6. [Crossref]  [PubMed]  [PMC] 
  54. Fox MG, Cohen HS, Sangi-Haghpeykar H, et.al. Relationship Between Obstructive Sleep Apnea and Balance on Computerized Dynamic Posturography. Cureus. 2022;14(11):e30973. [Crossref]  [PubMed]  [PMC] 
  55. Malicki M, Karuga FF, Szmyd B, Sochal M, Gabryelska A. Obstructive sleep apnea, circadian clock disruption, and metabolic consequences. Metabolites. 2022;13(1):60. [Crossref]  [PubMed]  [PMC] 
  56. Marrone O, Bonsignore MR. Blood-pressure variability in patients with ob- structive sleep apnea: current perspectives. Nat Sci Sleep. 2018;10:229-42. [Crossref]  [PubMed]  [PMC] 
  57. Ren R, Zhang Y, Yang L, Somers VK, Covassin N, Tang X. Association between arousals during sleep and hypertension among patients with obstructive sleep apnea. J Am Heart Assoc. 2022;11(1):e022141. [Crossref]  [PubMed]  [PMC] 
  58. Kim JB, Seo BS, Kim JH. Effect of arousal on sympathetic overactivity in patients with obstructive sleep apnea. Sleep Med. 2019;62:86-91. [Crossref]  [PubMed] 
  59. Taylor KS, Murai H, Millar PJ, Haruki N, Kimmerly DS, Morris BL, et al. Arousal from sleep and sympathetic excitation during wakefulness. Hypertension. 2016;68(6):1467-74. [Crossref]  [PubMed] 
  60. von Allmen DC, Francey LJ, Rogers GM, Ruben MD, Cohen AP, Wu G, et al. Circadian dysregulation: the next frontier in obstructive sleep apnea research. Otolaryngol Head Neck Surg. 2018;159(6):948-55. [Crossref]  [PubMed] 
  61. Arnardottir ES, Mackiewicz M, Gislason T, Teff KL, Pack AI. Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep. 2009;32(4):447-70. [Crossref]  [PubMed]  [PMC] 
  62. Gabryelska A, Turkiewicz S, Karuga FF, Sochal M, Strzelecki D, Białasiewicz P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients-Possible Mechanisms Involved and Clinical Implication. Int J Mol Sci. 2022;23(2):709. [Crossref]  [PubMed]  [PMC] 
  63. Lechat B, Scott H, Naik G, Hansen K, Nguyen DP, Vakulin A, Catcheside P, Eckert DJ. New and Emerging Approaches to Better Define Sleep Disruption and Its Consequences. Front Neurosci. 2021;15:751730. Erratum in: Front Neurosci. 2021 Nov 18;15:804589. [Crossref]  [PubMed]  [PMC] 
  64. Chen WJ, Liaw SF, Lin CC, Chiu CH, Lin MW, Chang FT. Effect of nasal CPAP on SIRT1 and endothelial function in obstructive sleep apnea syndrome. Lung. 2015;193(6):1037-45. [Crossref]  [PubMed] 
  65. Xie X, Pan L, Ren D, Du C, Guo Y. Effects of continuous positive airway pres- sure therapy on systemic inflammation in obstructive sleep apnea: a meta- analysis. Sleep Med. 2013;14(11):1139-50. [Crossref]  [PubMed] 
  66. Li X, Hu R, Ren X, He J. Interleukin-8 concentrations in obstructive sleep apnea syndrome: a systematic review and meta-analysis. Bioengineered. 2021;12(2):10666-81. [Crossref]  [PubMed]  [PMC] 
  67. Kheirandish-Gozal L, Gozal D. Obstructive sleep apnea and inflammation: proof of concept based on two illustrative cytokines. Int J Mol Sci. 2019;20(3):459. [Crossref]  [PubMed]  [PMC] 
  68. Kim MJ, Lee JH, Duffy JF. Circadian Rhythm Sleep Disorders. J Clin Outcomes Manag. 2013;20(11):513-528. [PubMed]  [PMC] 
  69. Gaspar LS, Hesse J, Yalçin M, Santos B, et.al. Long-term continuous positive airway pressure treatment ameliorates biological clock disruptions in obstructive sleep apnea. EBioMedicine. 2021;65:103248. [Crossref]  [PubMed]  [PMC] 
  70. Roenneberg T, Allebrandt KV, Merrow M, Vetter C. Social jetlag and obesity. Curr Biol. 2012;22(10):939-43. Erratum in: Curr Biol. 2013;23(8):737. [Crossref]  [PubMed] 
  71. Parsons MJ, Moffitt TE, Gregory AM, Goldman-Mellor S, Nolan PM, Poulton R, et al. Social jetlag, obesity and metabolic disorder: investigation in a cohort study. Int J Obes (Lond). 2015;39(5):842-8. [Crossref]  [PubMed]  [PMC] 
  72. Yang MY, Lin PW, Lin HC, Lin PM, Chen IY, Friedman M, et al. Alternations of circadian clock genes expression and oscillation in obstructive sleep apnea. J Clin Med. 2019;8(10):1634. [Crossref]  [PubMed]  [PMC] 
  73. Masri S. Sirtuin-dependent clock control: new advances in metabolism, aging and cancer. Curr Opin Clin Nutr Metab Care. 2015;18(6):521-7. [Crossref]  [PubMed]  [PMC] 
  74. Smith DF, Hossain MM, Hura A, Huang G, McConnell K, Ishman SL, et al. In- flammatory Milieu and Cardiovascular Homeostasis in Children With Ob- structive Sleep Apnea. Sleep. 2017;40(4):zsx022. [Crossref]  [PubMed]  [PMC] 
  75. Sun SY, Chen GH. Treatment of Circadian Rhythm Sleep-Wake Disorders. Curr Neuropharmacol. 2022;20(6):1022-1034. [Crossref]  [PubMed]  [PMC] 
  76. Burioka N, Koyanagi S, Endo M, Takata M, Fukuoka Y, Miyata M, Takeda K, Chikumi H, Ohdo S, Shimizu E. Clock gene dysfunction in patients with obstructive sleep apnoea syndrome. Eur Respir J. 2008;32(1):105-12. [Crossref]  [PubMed] 
  77. Šmon J, Kočar E, Pintar T, Dolenc-Grošelj L, Rozman D. Is obstructive sleep apnea a circadian rhythm disorder? J Sleep Res. 2023:e13875. [Crossref]  [PubMed] 
  78. Smolensky MH, Hermida RC, Reinberg A, Sackett-Lundeen L, Portaluppi F. Circadian disruption: New clinical perspective of disease pathology and basis for chronotherapeutic intervention. Chronobiol Int. 2016;33(8):1101-19. [Crossref]  [PubMed] 
  79. Pedrosa RP, Drager LF, de Paula LK, Amaro AC, Bortolotto LA, Lorenzi-Filho G, et al. Chronotherapy with valsartan/amlodipine fixed combination: a new strategy to improve blood pressure control and cardiovascular risk manage- ment in hypertensive patients. Expert Opin Pharmacother. 2017;18(6):583-92. [PubMed] 
  80. Bass J. Circadian topology of metabolism. Nature. 2012;491(7424):348-56. [Crossref]  [PubMed] 
  81. Hastings MH, Reddy AB, Maywood ES. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci. 2003;4(8):649-61. [Crossref]  [PubMed]