ISSN: 1300 - 6525 E-ISSN: 2149 - 0880
kulak burun boğaz
ve baş boyun cerrahisi dergisi
http://dergi.kbb-bbc.org.tr
Kayıtlı İndeksler








ORIGINAL RESEARCH

Protective Effects of Betaine on the Cochlea in Cisplatin-Induced Ototoxicity
Sisplatin Kaynaklı Ototoksisitede Betainin Koklea Üzerindeki Koruyucu Etkileri
Received Date : 02 Feb 2025
Accepted Date : 24 Mar 2025
Available Online : 08 Apr 2025
Doi: 10.24179/kbbbbc.2025-109074 - Makale Dili: EN
Journal of Ear Nose Throat and Head Neck Surgery. 2025;33(2):45-54.
Copyright © 2020 by Turkey Association of Society of Ear Nose Throat and Head Neck Surgery. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
ABSTRACT
Objective: Cisplatin is a platinum-based compound used to treat various cancers; however, its severe side effects, such as ototoxicity, limit its clinical use. Ototoxicity can lead to permanent damage, particularly affecting the organ of Corti. This study aimed to histopathologically evaluate the protective effect of betaine, known for its antioxidant and antiinflammatory properties, against cisplatin-induced ototoxicity. Material and Methods: Forty female Wistar albino rats were used with the approval of the Erciyes University Animal Experiments Local Ethics Committee. The rats were randomly assigned to 4 groups (n=10): Sham, Betaine, Cisplatin, and Cisplatin+Betaine. Betaine hydrochloride (250 mg/kg/day) was administered orally once daily for 30 days, while cisplatin (8 mg/kg/week) was administered intraperitoneally once weekly for 4 weeks. Cochlear tissues were collected, fixed, and processed for histopathological evaluation. Results: Cisplatin-induced ototoxicity led to structural deformities in the cochlea, particularly in the organ of Corti at the basal turn. In the Cisplatin+ Betaine group, the organ of Corti exhibited a more preserved structure, with maintained integrity of the stria vascularis and tectorial membrane. Statistically, the Cisplatin group showed significantly reduced stria vascularis and basilar membrane thickness, tectorial membrane length, and inner and outer hair height. In the Cisplatin+Betaine group, these parameters improved, with a significant increase observed in tectorial membrane length across all cochlear turns and outer hair cell height in the apical turn. Conclusion: This study demonstrates the protective role of betaine against cisplatin-induced ototoxicity. While the findings are promising for ototoxicity prophylaxis, further studies are warranted.
ÖZET
Amaç: Sisplatin, birçok kanserin tedavisinde kullanılan bir platin bazlı bileşiktir; ancak ototoksisite gibi ciddi yan etkileri tedavi kısıtlılığı oluşturmaktır. Ototoksisite, özellikle korti organını kalıcı olarak etkileyebilir. Bu çalışmada, antioksidan ve antiinflamatuar özelliklere sahip olduğu bilinen betainin, sisplatine bağlı ototoksisiteye karşı koruyucu etkisi histopatolojik olarak incelenmesi amaçlanmıştır. Gereç ve Yöntemler: Çalışmada, Erciyes Üniversitesi Hayvan Deneyleri Yerel Etik Kurul onayı doğrultusunda 40 adet Wistar albino dişi sıçan kullanıldı. Sıçanlar rastgele 4 eşit gruba (n=10) ayrıldı: Kontrol, Betain, Sisplatin ve Sisplatin+Betain. Deneyler sırasında sıçanlara betain hydrochloride (250 mg/kg/d) 30 gün boyunca (günde 1 kez) oral yolla ve sisplatin (8 mg/kg/d) 4 hafta (haftada 1 kez) intraperitoneal olarak uygulandı. Koklear dokuları toplandı, fiksasyon yapıldı ve histopatolojik değerlendirme yapıldı. Bulgular: Sisplatin ototoksisitesine bağlı olarak kokleanın, özellikle de bazal dönüşte yer alan korti organında deformasyonların meydana geldiği belirlendi. Sisplatin+Betain grubunda ise korti organının daha düzenli bir yapıya sahip olduğu, stria vaskülaris ile tektorial membranın bütünlüğünün korunduğu gözlendi. İstatistiksel sonuçlar da; sisplatin grubunda, stria vaskülaris ve baziler membran kalınlığı, tektorial memebran uzunluğu, dış ve iç saçlı hücre uzunluklarının anlamlı olarak azaldığı görüldü. Sisplatin+Betain grubunda ise artış meydana geldiği ancak bu artışın sadece kokleanın tüm dönüşlerindeki tektorial membran uzunluğunda ve kokleanın apeks dönüşündeki dış saçlı hücre uzunluğunda anlamlı olduğu tespit edildi. Sonuç: Bu çalışma, betainin sisplatin kaynaklı ototoksisiteye karşı koruyucu rolünü ortaya koymaktadır. Bulgular ototoksisite profilaksisi için umut verici olsa da, daha ileri çalışmalara ihtiyaç duyulmaktadır.
KAYNAKLAR
  1. Rosenberg B, Van Camp L, Grimley EB, et al. The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(IV) complexes. J Biol Chem. 1967;242(6):1347-52. [Crossref]  [PubMed] 
  2. Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, et al. Pharmacogenomics in pediatric oncology: review of gene-drug associations for clinical use. Int J Mol Sci. 2016;17(9):1502. [Crossref]  [PubMed]  [PMC] 
  3. Volarevic V, Djokovic B, Jankovic MG, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci. 2019;26(1):25. [Crossref]  [PubMed]  [PMC] 
  4. Breglio AM, Rusheen AE, Shide ED, et al. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun. 2017;8(1):1654. [Crossref]  [PubMed]  [PMC] 
  5. Kelman AD, Peresie HJ. Mode of DNA binding of cis-platinum(II) antitumor drugs: a base sequence-dependent mechanism is proposed. Cancer Treat Rep. 1979;63(9-10):1445-52. [PubMed] 
  6. Micetich K, Zwelling LA, Kohn KW. Quenching of DNA: platinum(II) monoadducts as a possible mechanism of resistance to cis-diamminedichloroplatinum(II) in L1210 cells. Cancer Res. 1983;43(8):3609-13. [PubMed] 
  7. Mytilineou C, Kramer BC, Yabut JA. Glutathione depletion and oxidative stress. Parkinsonism Relat Disord. 2002;8(6):385-7. [Crossref]  [PubMed] 
  8. Rybak LP, Whitworth CA, Mukherjea D, et al. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res. 2007;226(1-2):157-67. [Crossref]  [PubMed] 
  9. Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res. 2023;434:108783. [Crossref]  [PubMed] 
  10. Campbell KC, Meech RP, Rybak LP, et al. The effect of d-methionine on cochlear oxidative state with and without cisplatin administration: mechanisms of otoprotection. J Am Acad Audiol. 2003;14(3):144-56. [Crossref]  [PubMed] 
  11. Freyer DR, Chen L, Krailo MD, et al. Effects of sodium thiosulfate versus observation on development of cisplatin-induced hearing loss in children with cancer (ACCL0431): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017;18(1):63-74. Erratum in: Lancet Oncol. 2017;18(6):e301. [Crossref]  [PubMed]  [PMC] 
  12. Cingi C, Okar İ, Cingi Mİ, et al. Sıçanlarda sisplatinin ototoksik etkisinin gösterilmesi ve sodyum tiosulfatın bu etkiyi azaltmadaki rolünün ultrasütürüktürel araştırılması [Ototoxicity of cisplatin in rats and the role of thiosulfate in decreasing this effect]. K.B.B. ve Baş Boyun Cerrahisi Dergisi. 1994;2(1):1-4. [Link] 
  13. Yıldırım M, Inançlı HM, Samancı B, et al. Preventing cisplatin induced ototoxicity by n-acetylcysteine and salicylate. Kulak Burun Bogaz Ihtis Derg. 2010;20(4):173-83. [PubMed] 
  14. Berkiten G, Kumral TL, Saltürk Z, et al. The effect of coenzyme q10 on cisplatin-induced ototoxicity in rats. ENT Updates. 2016;6(3):110-5. [Crossref] 
  15. Craig SA. Betaine in human nutrition. Am J Clin Nutr. 2004;80(3):539-49. [Crossref]  [PubMed] 
  16. Hoffmann L, Brauers G, Gehrmann T, et al. Osmotic regulation of hepatic betaine metabolism. Am J Physiol Gastrointest Liver Physiol. 2013;304(9):G835-46. [Crossref]  [PubMed] 
  17. Kempson SA, Vovor-Dassu K, Day C. Betaine transport in kidney and liver: use of betaine in liver injury. Cell Physiol Biochem. 2013;32(7):32-40. [Crossref]  [PubMed] 
  18. Zhao G, He F, Wu C, et al. Betaine in inflammation: mechanistic aspects and applications. Front Immunol. 2018;9:1070. [Crossref]  [PubMed]  [PMC] 
  19. Ülger M, Ülger B, Turan IT, et al. Evaluation of the effects of favipiravir (T-705) on the lung tissue of healty rats: an experimental study. Food Chem Toxicol. 2025;196:115235. [Crossref]  [PubMed] 
  20. Rosenberg B, Vancamp L, Krigas T. Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode. Nature. 1965;205:698-9. [Crossref]  [PubMed] 
  21. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-78. [Crossref]  [PubMed]  [PMC] 
  22. Paken J, Govender CD, Pillay M, et al. A review of cisplatin-associated ototoxicity. Semin Hear. 2019;40(2):108-21. [Crossref]  [PubMed]  [PMC] 
  23. Katanić Stanković JS, Selaković D, Rosić G. Oxidative damage as a fundament of systemic toxicities induced by cisplatin-the crucial limitation or potential therapeutic target? Int J Mol Sci. 2023;24(19):14574. [Crossref]  [PubMed]  [PMC] 
  24. Kart A, Cigremis Y, Karaman M, et al. Caffeic acid phenethyl ester (CAPE) ameliorates cisplatin-induced hepatotoxicity in rabbit. Exp Toxicol Pathol. 2010;62(1):45-52. [Crossref]  [PubMed] 
  25. Sergi B, Ferraresi A, Troiani D, et al. Cisplatin ototoxicity in the guinea pig: vestibular and cochlear damage. Hear Res. 2003;182(1-2):56-64. [Crossref]  [PubMed] 
  26. Prayuenyong P, Baguley DM, Kros CJ, et al. Preferential cochleotoxicity of cisplatin. Front Neurosci. 2021;15:695268. [Crossref]  [PubMed]  [PMC] 
  27. Kros CJ, Steyger PS. Aminoglycoside- and cisplatin-induced ototoxicity: mechanisms and otoprotective strategies. Cold Spring Harb Perspect Med. 2019;9(11):a033548. [Crossref]  [PubMed]  [PMC] 
  28. Rybak LP, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention. Semin Hear. 2019;40(2):197-204. [Crossref]  [PubMed]  [PMC] 
  29. Böheim K, Bichler E. Cisplatin-induced ototoxicity: audiometric findings and experimental cochlear pathology. Arch Otorhinolaryngol. 1985;242(1):1-6. [Crossref]  [PubMed] 
  30. Prayuenyong P, Taylor JA, Pearson SE, et al. Vestibulotoxicity associated with platinum-based chemotherapy in survivors of cancer: a scoping review. Front Oncol. 2018;8:363. [Crossref]  [PubMed]  [PMC] 
  31. Mukherjea D, Whitworth CA, Nandish S, et al. Expression of the kidney injury molecule 1 in the rat cochlea and induction by cisplatin. Neuroscience. 2006;139(2):733-40. [Crossref]  [PubMed] 
  32. Sheth S, Mukherjea D, Rybak LP, et al. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci. 2017;11:338. [Crossref]  [PubMed]  [PMC] 
  33. Wimmer C, Mees K, Stumpf P, et al. Round window application of d-methionine, sodium thiosulfate, brain-derived neurotrophic factor, and fibroblast growth factor-2 in cisplatin-induced ototoxicity. Otol Neurotol. 2004;25(1):33-40. [Crossref]  [PubMed] 
  34. Wang J, Lloyd Faulconbridge RV, Fetoni A, et al. Local application of sodium thiosulfate prevents cisplatin-induced hearing loss in the guinea pig. Neuropharmacology. 2003;45(3):380-93. [Crossref]  [PubMed] 
  35. Somdaş MA, Güntürk İ, Balcıoğlu E, et al. Protective effect of n-acetylcysteine against cisplatin ototoxicity in rats: a study with hearing tests and scanning electron microscopy. Braz J Otorhinolaryngol. 2020;86(1):30-7. [Crossref]  [PubMed]  [PMC] 
  36. Korver KD, Rybak LP, Whitworth C, et al. Round window application of d-methionine provides complete cisplatin otoprotection. Otolaryngol Head Neck Surg. 2002;126(6):683-9. [Crossref]  [PubMed] 
  37. Kim HJ, Oh GS, Shen A, et al. Augmentation of NAD(+) by NQO1 attenuates cisplatin-mediated hearing impairment. Cell Death Dis. 2014;5(6):e1292. [Crossref]  [PubMed]  [PMC] 
  38. Terai K, Dong GZ, Oh ET, et al. Cisplatin enhances the anticancer effect of beta-lapachone by upregulating NQO1. Anticancer Drugs. 2009;20(10):901-9. [Crossref]  [PubMed] 
  39. Almashhadany A, Shackebaei D, Van der Touw T, et al. Homocysteine exposure impairs myocardial resistance to ischaemia reperfusion and oxidative stress. Cell Physiol Biochem. 2015;37(6):2265-74. [Crossref]  [PubMed] 
  40. Martínez Y, Li X, Liu G, et al. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids. 2017;49(12):2091-8. [Crossref]  [PubMed] 
  41. Day CR, Kempson SA. Betaine chemistry, roles, and potential use in liver disease. Biochim Biophys Acta. 2016;1860(6):1098-106. [Crossref]  [PubMed] 
  42. Monaco C, Andreakos E, Kiriakidis S, et al. Canonical pathway of nuclear factor kappa b activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc Natl Acad Sci USA. 2004;101(15):5634-9. [Crossref]  [PubMed]  [PMC] 
  43. Sun J, Wen S, Zhou J, et al. Association between malnutrition and hyperhomocysteine in Alzheimer's disease patients and diet intervention of betaine. J Clin Lab Anal. 2017;31(5):e22090. [Crossref]  [PubMed]  [PMC] 
  44. Du J, Zhang P, Luo J, et al. Dietary betaine prevents obesity through gut microbiota-drived microRNA-378a family. Gut Microbes. 2021;13(1):1-19. [Crossref]  [PubMed]  [PMC] 
  45. Van Puyvelde H, Dimou N, Katsikari A, et al. The association between dietary intakes of methionine, choline and betaine and breast cancer risk: a systematic review and meta-analysis. Cancer Epidemiol. 2023;83:102322. [Crossref]  [PubMed] 
  46. Chai GS, Jiang X, Ni ZF, et al. Betaine attenuates alzheimer-like pathological changes and memory deficits induced by homocysteine. J Neurochem. 2013;124(3):388-96. [Crossref]  [PubMed]