ISSN: 1300 - 6525 E-ISSN: 2149 - 0880
kulak burun boÄŸaz
ve baÅŸ boyun cerrahisi dergisi
http://dergi.kbb-bbc.org.tr
KoÅŸulsuz Destek Verenler

Kayıtlı İndeksler








REVIEW ARTICLES

Vestibular Implants: A Literature Review
Vestibüler Ä°mplantlar: Literatür Derlemesi
Received Date : 08 Sep 2022
Accepted Date : 23 Sep 2022
Available Online : 26 Sep 2022
Doi: 10.24179/kbbbbc.2022-93282 - Makale Dili: TR
KBB ve BBC Dergisi. 2022;30(4):224-31
Copyright © 2020 by Turkey Association of Society of Ear Nose Throat and Head Neck Surgery. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
ABSTRACT
Vestibular implant (VI) is a prosthesis that aims to restore bilaterally damaged peripheral vestibular function. VI fundamentally consists of three key components. (1) Gyroscopes and/or accelerometers, (2) An external processor, and (3) implanted stimulator. VI is applied to patients with bilateral vestibulopathy (BVP). In order to restore peripheral vestibular function, a new artificial (electrical) baseline stimulation needs to be created as the peripheral vestibular physiology is bilaterally damaged in patients with BVP. After adjusting the new artificial baseline stimulation with the vestibular implant, motion modulations are applied in order to adapt the individuals to the new electrical stimulation. VI research-based implantation criteria basically consist of 2 main processes: Bilaterally reduced or absent peripheral vestibular function as a result of the caloric test, rotational chair test (video) head impulse test and (2) the presence of severe vestibular function with the chronic symptoms such as imbalance and oscillopsia. However, one should pay attention to the existence of extra criteria. Regarding VI surgery, two different types of surgical approaches, intralabyrinthine and extralabyrinthine, can be used. Although both approaches have pros and cons, the most preferred approach is the intralabyrinthine approach. Intraoperative measurements are also performed during the surgery in order to assess the integrity of the implant and the appropriateness of the placement of the electrodes. The VI started with animal experiments and has been currently continuing with research based on humans. The aim of this review is to address fundamental knowledge and convey the scientific results on vestibular implants.
ÖZET
Vestibüler implant (Vİ), bilateral olarak fonksiyonu bozulmuş periferik vestibüler sistemi tekrar onarmayı amaçlayan bir protezdir. Temel olarak 3 bileşenden oluşmaktadır: (1) Jiroskoplar ve/veya ivmeölçerler (2) dış işlemci ve (3) implante edilmiş bir uyarıcıdır. VI bilateral vestibülopatisi (BVP) olan hastalara uygulanmaktadır. BVP’si olan bireylerde, vestibüler fizyolojinin bozulması nedeniyle sistemi restore edebilmek için, yapay olarak (elektriksel) yeni bir temel ateşleme hızının oluşturulması gerekmektedir. Vestibüler implant ile yeni temel ateşleme hızı ayarlanmasının ardından, baş hareket modülasyonları uygulanarak, bireyin yeni elektriksel uyarıma uyumu sağlanmaktadır. Vİ araştırma bazlı implantasyon kriterleri temelde 2 ana süreçten oluşmaktadır: (1) Kalorik test, rotasyonel sandalye testi (video), baş savurma testi sonucunda her iki kulakta azalmış veya mevcut olmayan vestibüler fonksiyonun saptanması ve (2) kronik dengesizlik ve osilopsi gibi kronik semptomların var olduğu ileri derecede vestibüler fonksiyon kaybıdır. Ancak ekstra kriterlerin varlığına dikkat edilmelidir. VI cerrahisinde intralabirentin ve ekstralabirentin olmak üzere iki farklı cerrahi yaklaşım kullanılabilir. Her iki yaklaşımın avantaj ve dezavantajları olmasına rağmen en çok tercih edilen intralabirentin yaklaşımıdır. Cerrahi süreç esnasında implantın bütünlüğünü ve elektrotların yerleşiminin uygunluğunu değerlendirmek için intraoperatif ölçümler uygulanmaktadır. Vestibüler implantlar, hayvan deneyleri ile başlamış olup günümüzde insanlar üzerinde araştırma tabanlı olarak uygulanmaya devam etmektedir. Bu gözden geçirme yazısında Vİ’ye yönelik temel bilgilerin ele alınması ve literatür sonuçlarının aktarılması amaçlanmıştır.
KAYNAKLAR
  1. Guyot JP, Perez Fornos A. Milestones in the development of a vestibular implant. Curr Opin Neurol. 2019;32(1):145-53. [Crossref]  [PubMed]  [PMC] 
  2. Cohen B, Suzuki JI. Eye movements induced by ampullary nerve stimulation. Am J Physiol. 1963;204:347-51. [Crossref]  [PubMed] 
  3. Cohen B, Suzuki JI, Bender MB. Nystagmus induced by electric stimulation of ampullary nerves. Acta Oto-Laryngologica. 1965;60(1-6):422-36. [Crossref] 
  4. Gong W, Merfeld DM. Prototype neural semicircular canal prosthesis using patterned electrical stimulation. Ann Biomed Eng. 2000;28(5):572-81. [Crossref]  [PubMed] 
  5. Dai C, Fridman GY, Chiang B, Davidovics NS, Melvin TA, Cullen KE, et al. Cross-axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head-mounted multichannel vestibular prosthesis. Exp Brain Res. 2011;210(3-4):595-606. [Crossref]  [PubMed]  [PMC] 
  6. Lewis RF, Gong W, Ramsey M, Minor L, Boyle R, Merfeld DM. Vestibular adaptation studied with a prosthetic semicircular canal. J Vestib Res. 2002-2003;12(2-3):87-94. [Crossref]  [PubMed] 
  7. Migliaccio AA, Meierhofer R, Della Santina CC. Characterization of the 3D angular vestibulo-ocular reflex in C57BL6 mice. Exp Brain Res. 2011;210(3-4):489-501. [Crossref]  [PubMed]  [PMC] 
  8. Thompson LA, Haburcakova C, Gong W, Lee DJ, Wall C 3rd, Merfeld DM, et al. Responses evoked by a vestibular implant providing chronic stimulation. J Vestib Res. 2012;22(1):11-5. [Crossref]  [PubMed]  [PMC] 
  9. Guyot JP, Sigrist A, Pelizzone M, Kos MI. Adaptation to steady-state electrical stimulation of the vestibular system in humans. Ann Otol Rhinol Laryngol. 2011;120(3):143-9. [Crossref]  [PubMed] 
  10. van de Berg R, Guinand N, Stokroos RJ, Guyot JP, Kingma H. The vestibular implant: quo vadis? Front Neurol. 2011;2:47. [Crossref]  [PubMed]  [PMC] 
  11. Guinand N, van de Berg R, Cavuscens S, Stokroos RJ, Ranieri M, Pelizzone M, et al. Vestibular implants: 8 years of experience with electrical stimulation of the vestibular nerve in 11 patients with bilateral vestibular loss. ORL J Otorhinolaryngol Relat Spec. 2015;77(4):227-40. [Crossref]  [PubMed] 
  12. Chow MR, Ayiotis AI, Schoo DP, Gimmon Y, Lane KE, Morris BJ, et al. Posture, gait, quality of life, and hearing with a vestibular implant. N Engl J Med. 2021;384(6):521-32. [Crossref]  [PubMed]  [PMC] 
  13. Guinand N, van de Berg R, Ranieri M, Cavuscens S, DiGiovanna J, Nguyen TA, et al. Vestibular implants: Hope for improving the quality of life of patients with bilateral vestibular loss. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7192-5. [Crossref]  [PubMed] 
  14. Ramos de Miguel A, Falcon Gonzalez JC, Ramos Macias A. Vestibular response to electrical stimulation of the otolith organs. implications in the development of a vestibular implant for the improvement of the sensation of gravitoinertial accelerations. J Int Adv Otol. 2017;13(2):154-61. [Crossref]  [PubMed] 
  15. Rubinstein JT, Bierer S, Kaneko C, Ling L, Nie K, Oxford T, et al. Implantation of the semicircular canals with preservation of hearing and rotational sensitivity: a vestibular neurostimulator suitable for clinical research. Otol Neurotol. 2012;33(5):789-96. [Crossref]  [PubMed]  [PMC] 
  16. Golub JS, Ling L, Nie K, Nowack A, Shepherd SJ, Bierer SM, et al. Prosthetic implantation of the human vestibular system. Otol Neurotol. 2014;35(1):136-47. [Crossref]  [PubMed]  [PMC] 
  17. Ramos Macias A, Ramos de Miguel A, Rodriguez Montesdeoca I, Borkoski Barreiro S, Falcón González JC. Chronic electrical stimulation of the otolith organ: preliminary results in humans with bilateral vestibulopathy and sensorineural hearing loss. Audiol Neurootol. 2020;25(1-2):79-90. [Crossref]  [PubMed] 
  18. Goldberg JM, Fernandez C. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. 3. Variations among units in their discharge properties. J Neurophysiol. 1971;34(4):676-84. [Crossref]  [PubMed] 
  19. Guyot JP, Sigrist A, Pelizzone M, Feigl GC, Kos MI. Eye movements in response to electrical stimulation of the lateral and superior ampullary nerves. Ann Otol Rhinol Laryngol. 2011;120(2):81-7. [Crossref]  [PubMed] 
  20. Faan RWBM, Dmsc VHM, Kerber K. Baloh and Honrubia's Clinical Neurophysiology of the Vestibular System. 4th ed. New York: Oxford University Press; 2010.
  21. Brontë-Stewart HM, Lisberger SG. Physiological properties of vestibular primary afferents that mediate motor learning and normal performance of the vestibulo-ocular reflex in monkeys. J Neurosci. 1994;14(3 Pt 1):1290-308. [Crossref]  [PubMed]  [PMC] 
  22. Lucieer F, Duijn S, Van Rompaey V, Pérez Fornos A, Guinand N, Guyot JP, et al. Full spectrum of reported symptoms of bilateral vestibulopathy needs further investigation-a systematic review. Front Neurol. 2018;9:352. [Crossref]  [PubMed]  [PMC] 
  23. Perez Fornos A, Guinand N, van de Berg R, Stokroos R, Micera S, Kingma H, et al. Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis. Front Neurol. 2014;5:66. [Crossref]  [PubMed]  [PMC] 
  24. Guyot JP, Perez Fornos A, Guinand N, van de Berg R, Stokroos R, Kingma H. Vestibular assistance systems: promises and challenges. J Neurol. 2016;263 Suppl 1:S30-5. [Crossref]  [PubMed]  [PMC] 
  25. Davidovics NS, Fridman GY, Della Santina CC. Co-modulation of stimulus rate and current from elevated baselines expands head motion encoding range of the vestibular prosthesis. Exp Brain Res. 2012;218(3):389-400. [Crossref]  [PubMed] 
  26. Boutros PJ, Schoo D, Rahman M, Valentin NS, Chow M, Gimmon Y, et al. First-in-human safety and preliminary efficacy results for the MVIâ„¢ Multichannel Vestibular Implant. Journal of Hearing Science. 2018;8(2):195-6. [Link] 
  27. Gong W, Haburcakova C, Merfeld DM. Vestibulo-ocular responses evoked via bilateral electrical stimulation of the lateral semicircular canals. IEEE Trans Biomed Eng. 2008;55(11):2608-19. [Crossref]  [PubMed]  [PMC] 
  28. Merfeld DM, Gong W, Morrissey J, Saginaw M, Haburcakova C, Lewis RF. Acclimation to chronic constant-rate peripheral stimulation provided by a vestibular prosthesis. IEEE Trans Biomed Eng. 2006;53(11):2362-72. [Crossref]  [PubMed] 
  29. Guinand N, Guyot JP, Kingma H, Kos I, Pelizzone M. Vestibular implants: the first steps in humans. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2262-4. [Crossref]  [PubMed] 
  30. Gong W, Merfeld DM. System design and performance of a unilateral horizontal semicircular canal prosthesis. IEEE Trans Biomed Eng. 2002;49(2):175-81. [Crossref]  [PubMed] 
  31. Lewis RF, Haburcakova C, Gong W, Makary C, Merfeld DM. Vestibuloocular reflex adaptation investigated with chronic motion-modulated electrical stimulation of semicircular canal afferents. J Neurophysiol. 2010;103(2):1066-79. [Crossref]  [PubMed]  [PMC] 
  32. Hain TC, Helminski JO. Anatomy and physiology of the normal vestibular system. Vestibular Rehabilitation. 2007;1(1):2. [Link] 
  33. Halmagyi GM, Curthoys IS. Otolith function tests. In: Herdman SJ, Clendaniel RA, eds. Vestibular Rehabilitation. 4th ed. New York, NY: F. A. Davis Company; 2014.
  34. Merfeld DM, Haburcakova C, Gong W, Lewis RF. Chronic vestibulo-ocular reflexes evoked by a vestibular prosthesis. IEEE Trans Biomed Eng. 2007;54(6 Pt 1):1005-15. [Crossref]  [PubMed] 
  35. Nguyen TA, DiGiovanna J, Cavuscens S, Ranieri M, Guinand N, van de Berg R, et al. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation. J Neural Eng. 2016;13(4):046023. [Crossref]  [PubMed] 
  36. Fernandez C, Goldberg JM. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol. 1971;34(4):661-75. [Crossref]  [PubMed] 
  37. DiGiovanna J, Nguyen TA, Guinand N, Pérez-Fornos A, Micera S. Neural network model of vestibular nuclei reaction to onset of vestibular prosthetic stimulation. Front Bioeng Biotechnol. 2016;4:34. [Crossref]  [PubMed]  [PMC] 
  38. van de Berg R, Ramos A, van Rompaey V, Bisdorff A, Perez-Fornos A, Rubinstein JT, et al. The vestibular implant: opinion statement on implantation criteria for research. J Vestib Res. 2020;30(3):213-23. [Crossref]  [PubMed]  [PMC] 
  39. Strupp M, Kim JS, Murofushi T, Straumann D, Jen JC, Rosengren SM, et al. Bilateral vestibulopathy: diagnostic criteria consensus document of the Classification Committee of the Bárány Society. J Vestib Res. 2017;27(4):177-89. [Crossref]  [PubMed]  [PMC] 
  40. van de Berg R, Guinand N, Guyot JP, Kingma H, Stokroos RJ. The modified ampullar approach for vestibular implant surgery: feasibility and its first application in a human with a long-term vestibular loss. Front Neurol. 2012;3:18. [Crossref]  [PubMed]  [PMC] 
  41. Fridman GY, Davidovics NS, Dai C, Migliaccio AA, Della Santina CC. Vestibulo-ocular reflex responses to a multichannel vestibular prosthesis incorporating a 3D coordinate transformation for correction of misalignment. J Assoc Res Otolaryngol. 2010;11(3):367-81. [Crossref]  [PubMed]  [PMC] 
  42. Rubinstein JT, Bierer S, Kaneko C, Ling L, Nie K, Oxford T, Newlands S, Santos F, Risi F, Abbas PJ, Phillips JO. Implantation of the semicircular canals with preservation of hearing and rotational sensitivity: a vestibular neurostimulator suitable for clinical research. Otology & Neurotology. 2012 Jul 1;33(5):789-96. [Crossref]  [PubMed]  [PMC] 
  43. Feigl GC, Fasel JH, Anderhuber F, Ulz H, Rienmüller R, Guyot JP, et al. Superior vestibular neurectomy: a novel transmeatal approach for a denervation of the superior and lateral semicircular canals. Otol Neurotol. 2009;30(5):586-91. [Crossref]  [PubMed] 
  44. Wall C 3rd, Kos MI, Guyot JP. Eye movements in response to electric stimulation of the human posterior ampullary nerve. Ann Otol Rhinol Laryngol. 2007;116(5):369-74. [Crossref]  [PubMed] 
  45. Dai C, Fridman GY, Della Santina CC. Effects of vestibular prosthesis electrode implantation and stimulation on hearing in rhesus monkeys. Hear Res. 2011;277(1-2):204-10. [Crossref]  [PubMed]  [PMC] 
  46. Tang S, Melvin TA, Della Santina CC. Effects of semicircular canal electrode implantation on hearing in chinchillas. Acta Otolaryngol. 2009;129(5):481-6. [Crossref]  [PubMed]  [PMC] 
  47. Nguyen TAK, Cavuscens S, Ranieri M, Schwarz K, Guinand N, van de Berg R, et al. Characterization of cochlear, vestibular and cochlear-vestibular electrically evoked compound action potentials in patients with a vestibulo-cochlear implant. Front Neurosci. 2017;11:645. [Crossref]  [PubMed]  [PMC] 
  48. Fishman AJ, Roland JT Jr, Alexiades G, Mierzwinski J, Cohen NL. Fluoroscopically assisted cochlear implantation. Otol Neurotol. 2003;24(6):882-6. [Crossref]  [PubMed] 
  49. Stultiens JJA, Postma AA, Guinand N, Pérez Fornos A, Kingma H, van de Berg R. Vestibular implantation and the feasibility of fluoroscopy-guided electrode insertion. Otolaryngol Clin North Am. 2020;53(1):115-26. [Crossref]  [PubMed] 
  50. Phillips C, Ling L, Oxford T, Nowack A, Nie K, Rubinstein JT, et al. Longitudinal performance of an implantable vestibular prosthesis. Hear Res. 2015;322:200-11. [Crossref]  [PubMed]  [PMC] 
  51. Phillips JO, Ling L, Nie K, Jameyson E, Phillips CM, Nowack AL, et al. Vestibular implantation and longitudinal electrical stimulation of the semicircular canal afferents in human subjects. J Neurophysiol. 2015;113(10):3866-92. [Crossref]  [PubMed]  [PMC] 
  52. Guinand N, Van de Berg R, Cavuscens S, Ranieri M, Schneider E, Lucieer F, et al. The video head impulse test to assess the efficacy of vestibular implants in humans. Front Neurol. 2017;8:600. [Crossref]  [PubMed]  [PMC] 
  53. van de Berg R, Guinand N, Nguyen TA, Ranieri M, Cavuscens S, Guyot JP, et al. The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans. Front Syst Neurosci. 2015;8:255. [Crossref]  [PubMed]  [PMC] 
  54. Boutros PJ, Schoo DP, Rahman M, Valentin NS, Chow MR, Ayiotis AI, et al. Continuous vestibular implant stimulation partially restores eye-stabilizing reflexes. JCI Insight. 2019;4(22):e128397. [Crossref]  [PubMed]  [PMC] 
  55. Fornos AP, van de Berg R, Armand S, Cavuscens S, Ranieri M, Crétallaz C, et al. Cervical myogenic potentials and controlled postural responses elicited by a prototype vestibular implant. J Neurol. 2019;266(Suppl 1):33-41. [Crossref]  [PubMed]  [PMC] 
  56. Phillips C, Defrancisci C, Ling L, Nie K, Nowack A, Phillips JO, et al. Postural responses to electrical stimulation of the vestibular end organs in human subjects. Exp Brain Res. 2013;229(2):181-95. [Crossref]  [PubMed] 
  57. Lucieer FMP, Van Hecke R, van Stiphout L, Duijn S, Perez-Fornos A, Guinand N, et al. Bilateral vestibulopathy: beyond imbalance and oscillopsia. J Neurol. 2020;267(Suppl 1):241-55. [Crossref]  [PubMed]  [PMC] 
  58. Guinand N, Pijnenburg M, Janssen M, Kingma H. Visual acuity while walking and oscillopsia severity in healthy subjects and patients with unilateral and bilateral vestibular function loss. Arch Otolaryngol Head Neck Surg. 2012;138(3):301-6. [Crossref]  [PubMed] 
  59. Guinand N, Van de Berg R, Cavuscens S, Stokroos R, Ranieri M, Pelizzone M, et al. Restoring visual acuity in dynamic conditions with a vestibular implant. Front Neurosci. 2016;10:577. [Crossref]  [PubMed]  [PMC] 
  60. Starkov D, Guinand N, Lucieer F, Ranieri M, Cavuscens S, Pleshkov M, et al. Restoring the high-frequency dynamic visual acuity with a vestibular implant prototype in humans. Audiol Neurootol. 2020;25(1-2):91-5. [Crossref]  [PubMed]