ISSN: 1300 - 6525 E-ISSN: 2149 - 0880
kulak burun boğaz
ve baş boyun cerrahisi dergisi
http://dergi.kbb-bbc.org.tr
Kayıtlı İndeksler





REVIEW ARTICLES

Current Approaches to Ototoxicity
Ototoksisitede Güncel Yaklaşım
Received Date : 24 Jan 2021
Accepted Date : 22 Feb 2021
Available Online : 23 Mar 2021
Doi: 10.24179/kbbbbc.2021-81529 - Makale Dili: TR
KBB ve BBC Dergisi. 2021;29(3):210-21
Copyright © 2020 by Turkey Association of Society of Ear Nose Throat and Head Neck Surgery. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
ABSTRACT
Ototoxicity is the damage to the cochlear and vestibular organs as a result of exposure to various therapeutic agents and chemicals (organic solvents, asphyxiant gases, pesticides, heavy metals, and environmental chemicals). Agents known to cause ototoxicity are antibiotics, antineoplastic agents, diuretics, and anti-inflammatory, antimalarial, and ototopical drugs. Ototoxicity causes damage to the outer hair cells in the organ of corti and the type I hair cells in the vestibular system. The most common ototoxicity symptoms are tinnitus, hearing loss, dizziness, hyperacusis, and auditory saturation. The prevalence and degree of ototoxicity may manifest differently in each person. These individual differences result from the difference in genetic susceptibility to the ototoxic effects of the treatment. The prevalence of ototoxicity in all age groups varies between 4% and 90%. Although ototoxicity is not a life-threatening condition, it can have a negative impact on communication and health-related quality of life, affecting important professional, educational, and social outcomes. Even though there is no widely accepted protocol, an effective ototoxicity monitoring program should include a protocol that includes pure tone audiometry, a basic audiological test battery for otoacoustic emission and immittance meter, and appropriate follow-up tests. Various treatment methods and protective agents are used to minimize the damage caused by ototoxicity. In addition, many animal studies are carried out to prevent ototoxicity. In this review, ototoxicity is discussed in detail in line with these considerations, and drugs that cause ototoxicity, protective agents, and related animal studies are examined.
ÖZET
Ototoksisite çeşitli terapötik ajanlar ve kimyasal maddelerle (organik çözücüler, boğucu gazlar, böcek ilaçları, ağır metaller, çevresel kimyasallar) karşılaşma sonucu koklear ve vestibüler organlarda oluşan hasarlanmadır. Ototoksisiteye neden olduğu bilinen ajanlar, antibiyotikler, antineoplastikler, diüretikler, antiinflamatuar, antimalaryal ilaçlar ve ototopik ilaçlardır. Ototoksisite, korti organında bulunan dış şaçlı hücrelerde ve vestibüler sistemde bulunan Tip 1 tüy hücrelerinde hasara yol açar. Ototoksisite en fazla görülen semptomlar; tinnitus, işitme kaybı, baş dönmesi, hiperakuzi ve işitsel dolgunluktur. Ototoksisite prevalansı ve derecesi, kişisel farklılıklar gösterebilir. Bu kişisel farklılıklar, tedavi¬nin ototoksik etkilerine genetik duyarlılık farkından kaynaklanır. Tüm yaş gruplarındaki ototoksisite pre¬valansı %4-90 arasında değişir. Ototoksisite, yaşamı tehdit eden bir durum olmasa da önemli mesleki, eğitimsel ve sosyal sonuçlarla iletişim ve sağlıkla ilişkili yaşam kalitesi üzerinde olumsuz bir etkisi olabilir. Etkili bir ototoksisite izleme programı; saf ses odyometrisi, otoakustik emisyon ve immitansmetrik değerlendirme yapan temel odyolojik test bataryası ve uygun takip testlerini içeren bir protokolü içermelidir, ancak yaygın olarak kabul edilen bir protokol bulunmamaktadır. Ototoksisitenin sonucu meydana gelen hasarı en aza indirmek için çeşitli tedavi yöntemleri ve koruyucu ajanlar kullanılmaktadır. Bunun yanı sıra ototoksisitenin önlenmesi adına çok sayıda hayvan çalışması yapılmaktadır. Bu bilgiler doğrultusunda hazırlamış olduğumuz bu derlemede, ototoksisite ayrıntılı şekilde ele alınmış olup, ototoksisiteye neden olan ilaçlar, koruyucu ajanlar ve bununla ilgili olarak yapılan hayvan çalışmaları incelenmiştir.
KAYNAKLAR
  1. Morata TC. Chemical exposure as a risk factor for hearing loss. J Occup Environ Med. 2003;45(7):676-82. [Crossref] 
  2. Chiodo AA, Alberti PW. Experimental, clinical and preventive aspects of ototoxicity. Eur Arch Otorhinolaryngol. 1994;251(7):375-92. [Crossref]  [PubMed] 
  3. Chen Y, Huang WG, Zha DJ, Qiu JH, Wang JL, Sha SH, et al. Aspirin attenuates gentamicin ototoxicity: from the laboratory to the clinic. Hear Res. 2007;226(1-2):178-82. [Crossref]  [PubMed] 
  4. Hain TC, Cherchi M, Yacovino DA. Bilateral vestibular loss. Semin Neurol. 2013;33(3):195-203. [Crossref]  [PubMed] 
  5. Ganesan P, Schmiedge J, Manchaiah V, Swapna S, Dhandayutham S, Kothandaraman PP. Ototoxicity: a challenge in diagnosis and treatment. J Audiol Otol. 2018;22(2):59-68. [Crossref]  [PubMed]  [PMC] 
  6. Landier W. Ototoxicity and cancer therapy. Cancer. 2016;1;122(11):1647-58. [Crossref]  [PubMed] 
  7. Schmitt NC, Page BR. Chemoradiation-induced hearing loss remains a major concern for head and neck cancer patients. Int J Audiol. 2018;57(sup4):S49-S54. [Crossref]  [PubMed]  [PMC] 
  8. Lord SG. Monitoring protocols for cochlear toxicity. Semin Hear. 2019;40(2):122-43. [Crossref]  [PubMed]  [PMC] 
  9. Henley CM, Rybak LP. Developmental ototoxicity. Otolaryngol Clin North Am. 1993;26(5):857-71. [Crossref]  [PubMed] 
  10. Konrad-Martin D, Gordon JS, Reavis KM, Wilmington DJ, Helt WJ, Fausti SA. Audiological monitoring of patients receiving ototoxic drugs. Perspectives on Hearing and Hearing Disorders Research and Diagnostics. 2005;9(1):17-22. [Crossref] 
  11. Campbell KC, Kalkanis J, Glatz FR. Ototoxicity: mechanisms, protective agents, and monitoring. Current Opinion in Otolaryngology & Head and Neck Surgery. 2000;8(5):436-40. [Crossref] 
  12. Leigh-Paffenroth E, Reavis KM, Gordon JS, Dunckley KT, Fausti SA, Konrad-Martin D. Objective measures of ototoxicity. Perspectives on Hearing and Hearing Disorders Research and Diagnostics. 2005;9(1):10-6. [Crossref] 
  13. Brooks B, Knight K. Ototoxicity monitoring in children treated with platinum chemotherapy. Int J Audiol. 2018;57(sup4):S34-S40. [Crossref]  [PubMed] 
  14. Handelsman JA. Vestibulotoxicity: strategies for clinical diagnosis and rehabilitation. Int J Audiol. 2018;57(sup4):S99-S107. [Crossref]  [PubMed] 
  15. Konrad-Martin D, Reavis KM, McMillan G, Helt WJ, Dille M. Proposed comprehensive ototoxicity monitoring program for VA healthcare (COMP-VA). J Rehabil Res Dev. 2014;51(1):81-100. [Crossref]  [PubMed]  [PMC] 
  16. McGuire JM, Bunch RL, Anderson RC, Boaz HE, Flynn EH, Powell HM, et al. Ilotycin, a new antibiotic. Antibiot Chemother (Northfield). 1952;2(6):281-3. [PubMed] 
  17. Sacristán JA, Soto JA, de Cos MA. Erythromycin-induced hypoacusis: 11 new cases and literature review. Ann Pharmacother. 1993;27(7-8):950-5. [Crossref]  [PubMed] 
  18. Brown BA, Griffith DE, Girard W, Levin J, Wallace RJ Jr. Relationship of adverse events to serum drug levels in patients receiving high-dose azithromycin for mycobacterial lung disease. Clin Infect Dis. 1997;24(5):958-64. [Crossref]  [PubMed] 
  19. Hajiioannou JK, Florou V, Kousoulis P, Fragkos M, Moshovakis E. Clarithromycin induced reversible sensorineural hearing loss. B-ENT. 2011;7(2):127-30. [PubMed] 
  20. Prayuenyong P, Kasbekar AV, Baguley DM. Clinical implications of chloroquine and hydroxychloroquine ototoxicity for COVID-19 treatment: a mini-review. Front Public Health. 2020;29;8:252. [Crossref]  [PubMed]  [PMC] 
  21. Bortoli R, Santiago M. Chloroquine ototoxicity. Clin Rheumatol. 2007;26(11):1809-10. [Crossref]  [PubMed] 
  22. Koegel L Jr. Ototoxicity: a contemporary review of aminoglycosides, loop diuretics, acetylsalicylic acid, quinine, erythromycin, and cisplatinum. Am J Otol. 1985;6(2):190-9. [PubMed] 
  23. Dieler R, Davies C, Shehata-Dieler WE. Der einfluss von chinin auf aktive motilität und feinstruktur isolierter äusserer haarzellen der meerschweinchenkochlea [The effects of quinine on active motile responses and fine structure of isolated outer hair cells from the Guinea pig cochlea]. Laryngorhinootologie. 2002;81(3):196-203. [Crossref]  [PubMed] 
  24. Karlsson KK, Ulfendahl M, Khanna SM, Flock Å. The effects of quinine on the cochlear mechanics in the isolated temporal bone preparation. Hearing Research. 1991;53(1):95-100. [Crossref] 
  25. Jung TT, Rhee CK, Lee CS, Park YS, Choi DC. Ototoxicity of salicylate, nonsteroidal antiinflammatory drugs, and quinine. Otolaryngol Clin North Am. 1993;26(5):791-810. [Crossref]  [PubMed] 
  26. Cazals Y, Huang ZW. Average spectrum of cochlear activity: a possible synchronized firing, its olivo-cochlear feedback and alterations under anesthesia. Hear Res. 1996;1;101(1-2):81-92. [Crossref]  [PubMed] 
  27. Day RO, Graham GG, Bieri D, Brown M, Cairns D, Harris G, Hounsell J, et al. Concentration-response relationships for salicylate-induced ototoxicity in normal volunteers. Br J Clin Pharmacol. 1989;28(6):695-702. [Crossref]  [PubMed]  [PMC] 
  28. Sheppard A, Hayes SH, Chen GD, Ralli M, Salvi R. Review of salicylate-induced hearing loss, neurotoxicity, tinnitus and neuropathophysiology. Acta Otorhinolaryngol Ital. 2014;34(2):79-93. [PubMed]  [PMC] 
  29. Koopmann CF Jr, Glattke TA, Caffrey JD. Effect of ibuprofen upon hearing in the guinea pig. Otolaryngol Head Neck Surg. 1982;90(6):819-23. [Crossref]  [PubMed] 
  30. Al-Ghamdi BS, Rohra DK, Abuharb GAI, Alkofide HA, AlRuwaili NS, Shoukri MM, et al. Use of beta blockers is associated with hearing loss. Int J Audiol. 2018;57(3):213-20. [Crossref]  [PubMed] 
  31. Roland PS. New developments in our understanding of ototoxicity. Ear Nose Throat J. 2004;83(9 Suppl 4):15-6; discussion 16-7. [Crossref]  [PubMed] 
  32. Kitasato I, Yokota M, Inouye S, Igarashi M. Comparative ototoxicity of ribostamycin, dactimicin, dibekacin, kanamycin, amikacin, tobramycin, gentamicin, sisomicin and netilmicin in the inner ear of guinea pigs. Chemotherapy. 1990;36(2):155-68. [Crossref]  [PubMed] 
  33. Musiime GM, Seale AC, Moxon SG, Lawn JE. Risk of gentamicin toxicity in neonates treated for possible severe bacterial infection in low- and middle-income countries: systematic review. Trop Med Int Health. 2015;20(12):1593-606. [Crossref]  [PubMed] 
  34. Kusunoki T, Cureoglu S, Schachern PA, Sampaio A, Fukushima H, Oktay MF, et al. Effects of aminoglycoside administration on cochlear elements in human temporal bones. Auris Nasus Larynx. 2004;31(4):383-8. [Crossref] 
  35. Kaplan DM, Nedzelski JM, Chen JM, Shipp DB. Intratympanic gentamicin for the treatment of unilateral Meniere's disease. Laryngoscope. 2000;110(8):1298-305. [Crossref]  [PubMed] 
  36. Rybak LP, Ramkumar V. Ototoxicity. Kidney Int. 2007;72(8):931-5. [Crossref]  [PubMed] 
  37. Lanvers-Kaminsky C, Zehnhoff-Dinnesen AA, Parfitt R, Ciarimboli G. Drug-induced ototoxicity: mechanisms, pharmacogenetics, and protective strategies. Clin Pharmacol Ther. 2017;101(4):491-500. [Crossref]  [PubMed] 
  38. Wei M, Yuan X. Cisplatin-induced ototoxicity in children with solid tumor. J Pediatr Hematol Oncol. 2019;41(2):e97-e100. [Crossref]  [PubMed] 
  39. Langer T, am Zehnhoff-Dinnesen A, Radtke S, Meitert J, Zolk O. Understanding platinum-induced ototoxicity. Trends Pharmacol Sci. 2013;34(8):458-69. [Crossref]  [PubMed] 
  40. Brock PR, Knight KR, Freyer DR, Campbell KC, Steyger PS, Blakley BW, et al. Platinum-induced ototoxicity in children: a consensus review on mechanisms, predisposition, and protection, including a new International Society of Pediatric Oncology Boston ototoxicity scale. J Clin Oncol. 2012;1;30(19):2408-17. [Crossref]  [PubMed]  [PMC] 
  41. Mukherjea D, Whitworth CA, Nandish S, Dunaway GA, Rybak LP, Ramkumar V. Expression of the kidney injury molecule 1 in the rat cochlea and induction by cisplatin. Neuroscience. 2006;12;139(2):733-40. [Crossref]  [PubMed] 
  42. Stebbins WC, McGinn CS, Feitosa MAG, Moody DB, Prosen CA, Serafin JV. Animal models in the study of ototoxic hearing loss. In: Lerner SA, Matz GJ, Hawkins JE, eds. Aminoglycoside Ototoxicity. Boston: Little Brown; 1981. p.5-25. (Baskı sayısı eklenmelidir.) [Link] 
  43. Prezant TR, Agapian JV, Bohlman MC, Bu X, Oztas S, Qiu WQ, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet. 1993;4(3):289-94. [Crossref]  [PubMed] 
  44. Sezer K, Keskin M. [Role of the free oxygen radicals on the pathogenesis of the diseases]. F.Ü. Sağ Bil Vet Derg. 2014;28(1):49-56. [Link] 
  45. Rybak LP, Whitworth CA. Ototoxicity: therapeutic opportunities. Drug Discov Today. 2005;1;10(19):1313-21. [Crossref]  [PubMed] 
  46. Hazlitt RA, Min J, Zuo J. Progress in the development of preventative drugs for cisplatin-induced hearing loss. J Med Chem. 2018;12;61(13):5512-24. [Crossref]  [PubMed]  [PMC] 
  47. Cascella V, Giordano P, Hatzopoulos S, Petruccelli J, Prosser S, Simoni E, et al. A new oral otoprotective agent. Part 1: electrophysiology data from protection against noise-induced hearing loss. Med Sci Monit. 2012;18(1):BR1-8. [Crossref]  [PubMed]  [PMC] 
  48. dos Reis A, Dalmolin SP, Dallegrave E. Animal models for hearing evaluations: a literature review. Revista CEFAC. 2017;19(3):417-28. [Crossref] 
  49. Ohlemiller KK, Jones SM, Johnson KR. Application of mouse models to research in hearing and balance. J Assoc Res Otolaryngol. 2016;17(6):493-523. [Crossref]  [PubMed]  [PMC] 
  50. Resmî Gazete (6.7.2006, Sayı: 26220) Sayılı Hayvan Deneyleri Etik Kurullarının Çalışma Usul ve Esaslarına Dair Yönetmelik; 2011.
  51. Fernandez K, Wafa T, Fitzgerald TS, Cunningham LL. An optimized, clinically relevant mouse model of cisplatin-induced ototoxicity. Hear Res. 2019;375:66-74. [Crossref]  [PubMed]  [PMC] 
  52. Paken J, Govender CD, Pillay M, Sewram V. A review of cisplatin-associated ototoxicity. Semin Hear. 2019;40(2):108-121. [Crossref]  [PubMed]  [PMC] 
  53. Avcı D, Erkan M, Sönmez MF, Kökoğlu K, Güneş MS, Gündoğdu R, et al. A prospective experimental study on the protective effect of resveratrol against amikacin-induced ototoxicity in rats. J Int Adv Otol. 2016;12(3):290-7. [Crossref] 
  54. Kim YJ, Tian C, Kim J, Shin B, Choo OS, Kim YS, et al. Autophagic flux, a possible mechanism for delayed gentamicin-induced ototoxicity. Sci Rep. 2017;1;7:41356. [Crossref]  [PubMed]  [PMC] 
  55. Le Prell CG, Ojano-Dirain C, Rudnick EW, Nelson MA, DeRemer SJ, Prieskorn DM, et al. Assessment of nutrient supplement to reduce gentamicin-induced ototoxicity. J Assoc Res Otolaryngol. 2014;15(3):375-93. [Crossref]  [PubMed]  [PMC] 
  56. Guitton MJ, Caston J, Ruel J, Johnson RM, Pujol R, Puel JL. Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci. 2003;23(9):3944-52. [Crossref] 
  57. Zou L, Xue Y, Jones M, Heinbockel T, Ying M, Zhan X. The effects of quinine on neurophysiological properties of dopaminergic neurons. Neurotox Res. 2018;34(1):62-73. [Crossref] 
  58. Ochi K, Kinoshita H, Kenmochi M, Nishino H, Ohashi T. Effects of nimodipine on quinine ototoxicity. Ann Otol Rhinol Laryngol. 2003;112(2):163-8. [Crossref]  [PubMed] 
  59. Kobayashi T, Rong Y, Chiba T, Marcus DC, Ohyama K, Takasaka T. Ototoxic effect of erythromycin on cochlear potentials in the guinea pig. Ann Otol Rhinol Laryngol. 1997;106(7 Pt 1):599-603. [Crossref]  [PubMed]