ISSN: 1300 - 6525 E-ISSN: 2149 - 0880
kulak burun boğaz
ve baş boyun cerrahisi dergisi
http://dergi.kbb-bbc.org.tr
Koşulsuz Destek Verenler

Kayıtlı İndeksler








REVIEW ARTICLES

Signal Processing Strategies In Cochlear Implant Systems: A Review of Literature
Koklear İmplant Sistemlerinde Sinyal İşlemleme Stratejileri: Literatür Derlemesi
Received Date : 01 Feb 2021
Accepted Date : 11 Mar 2021
Available Online : 24 Mar 2021
Doi: 10.24179/kbbbbc.2021-81939 - Makale Dili: TR
KBB ve BBC Dergisi. 2021;29(3):222-35
Copyright © 2020 by Turkey Association of Society of Ear Nose Throat and Head Neck Surgery. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
ABSTRACT
Cochlear implant systems are used for hearing re/habilitation in case of hearing loss and in cases where conventional hearing aids are insufficient. Cochlear implant technologies are developing rapidly. Signal processing and speech coding strategies are among the main topics of interest in the development of these technologies. Considering the limited stimulation of the cochlear implant electrodes; various signal processing strategies have been developed to provide users with the clearest and most natural sound possible. The aim of this literature review was to examine the speech processing strategies in cochlear implant systems. In light of the findings in the literature, the effects of different strategies on speech perception outcomes show great variability. Instead of establishing a common best-performing strategy for all users, selecting an individual strategy seems to be preferable for the best benefit.
ÖZET
Koklear implantlar, işitme kaybı olması durumunda ve konvansiyonel işitme cihazlarının yetersiz kaldığı durumlarda işitmenin rehabilitasyonu için kullanılmaktadır. Koklear implant teknolojileri hızlı bir şekilde gelişmektedir. Sinyal işlemleme ve konuşma kodlama stratejileri ise bu teknolojilerin gelişiminde başlıca ilgi duyulan konular arasında yer almaktadır. Koklear implant elektrotlarının sınırlı uyarımı göz önünde bulundurularak, kullanıcılarına mümkün olan en net ve en doğal sesi sunmayı amaçlayan çeşitli sinyal işlemleme stratejileri geliştirilmiştir. Bu derlemenin amacı, farklı firmalara ait konuşma işleme stratejileri detaylı bir şekilde incelemektir. Literatürde bu konuda yer alan bilgiler ışığında, farklı stratejilerinin konuşma algısı sonuçları üzerindeki etkilerinin değişkenlik göstermektedir. Koklear implant kullanıcılarında en iyi performansı elde etmek için ortak bir strateji belirlemek yerine, işitsel gelişim ve bireysel ihtiyaçlar göz önünde bulundurularak kişiye uygun bir strateji belirlemek, uygun programlama parametreleriyle kullanıcının gelişimini desteklemek ve konuşma algısı çıktılarını objektif test yöntemleriyle takip etmek büyük önem arz etmektedir.
KAYNAKLAR
  1. Távora-Vieira D, Rajan GP. Assessment of fine structure processing strategies in unilaterally deafened cochlear implant users. International Journal of Otolaryngology and Head & Neck Surgery. 2014;3(06):347-53. [Crossref] 
  2. Heng J, Cantarero G, Elhilali M, Limb CJ. Impaired perception of temporal fine structure and musical timbre in cochlear implant users. Hear Res. 2011;280(1-2):192-200. [Crossref]  [PubMed]  [PMC] 
  3. Beiter AL, Nel E. The history of Cochlear™ Nucleus® sound processor upgrades: 30 years and counting. J Otol. 2015;10(3):108-14. [Crossref]  [PubMed]  [PMC] 
  4. Patrick JF, Busby PA, Gibson PJ. The development of the Nucleus Freedom Cochlear implant system. Trends Amplif. 2006;10(4): 175-200. [Crossref]  [PubMed]  [PMC] 
  5. McDermott HJ, McKay CM, Vandali AE. A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant. J Acoust Soc Am. 1992; 91(6):3367-71. [Crossref]  [PubMed] 
  6. Clark G. Speech (sound) processing. Cochlear Implants: Fundamentals and Applications. New York: Springer; 2003. p.381-453. (Baskı sayısı eklenmelidir.)
  7. Somek B, Fajt S, Dembitz A, Ivković M, Ostojić J. Coding strategies for cochlear implants. ATKAAF. 2006;47(1-2):69-74. [Link] 
  8. Manrique M, Huarte A, Morera C, Caballé L, Ramos A, Castillo C, et al. Speech perception with the ACE and the SPEAK speech coding strategies for children implanted with the Nucleus cochlear implant. Int J Pediatr Otorhinolaryngol. 2005;69(12):1667-74. [Crossref]  [PubMed] 
  9. Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM. Better speech recognition with cochlear implants. Nature. 1991;18;352(6332):236-8. [Crossref]  [PubMed] 
  10. Plant KL, Whitford LA, Psarros CE, Vandali AE. Parameter selection and programming recommendations for the ACE and CIS speech-processing strategies in the Nucleus 24 cochlear implant system. Cochlear Implants Int. 2002;3(2):104-25. [Crossref]  [PubMed] 
  11. Svirsky, M. A., Chute, P. M., Green, J., Bollard, P., & Miyamoto, R. T. (2000). Language Development in Children Who Are Prelingually Deaf Who Have Used the SPEAK or CIS Stimulation Strategies Since Initial Stimulation. Volta Review, 102(4).
  12. Vandali AE, Whitford LA, Plant KL, Clark GM. Speech perception as a function of electrical stimulation rate: using the Nucleus 24 cochlear implant system. Ear Hear. 2000;21(6):608-24. [Crossref]  [PubMed] 
  13. Agrawal D. Prosody perception in cochlear implant users: EEG evidence. [Master Thesis]. Akola, India: University of Veterinary Medicine Hannover; 2012. [Link] 
  14. Nogueira W, Büchner A, Lenarz T, Edler B. A psychoacoustic" NofM"-type speech coding strategy for cochlear implants. EURASIP Journal on Advances in Signal Processing. 2005;2005(18):101672. [Crossref] 
  15. Pasanisi E, Bacciu A, Vincenti V, Guida M, Berghenti MT, Barbot A, et al. Comparison of speech perception benefits with SPEAK and ACE coding strategies in pediatric Nucleus CI24M cochlear implant recipients. Int J Pediatr Otorhinolaryngol. 2002;17;64(2):159-63. [Crossref]  [PubMed] 
  16. Beynon AJ, Snik AF, van den Broek P. Comparison of different speech coding strategies using a disability-based inventory and speech perception tests in quiet and in noise. Otol Neurotol. 2003;24(3):392-6. [Crossref]  [PubMed] 
  17. Kim HN, Shim YJ, Chung MH, Lee YH. Benefit of ACE compared to CIS and SPEAK coding strategies. In: Kim CS, Chang SO, Lim D, eds. Updates in Cochlear Implantation. 2nd ed. Vol 57. Seoul, Korea: Karger Publishers; 1999. p.408-11. [Crossref] 
  18. Kiefer J, Hohl S, Stürzebecher E, Pfennigdorff T, Gstöettner W. Comparison of speech recognition with different speech coding strategies (SPEAK, CIS, and ACE) and their relationship to telemetric measures of compound action potentials in the nucleus CI 24M cochlear implant system. Audiology. 2001;40(1):32-42. [Crossref]  [PubMed] 
  19. Büchner A, Nogueira W, Edler B, Battmer RD, Lenarz T. Results from a psychoacoustic model-based strategy for the nucleus-24 and freedom cochlear implants. Otol Neurotol. 2008;29(2):189-92. [Crossref]  [PubMed] 
  20. Loizou PC, Poroy O, Dorman M. The effect of parametric variations of cochlear implant processors on speech understanding. J Acoust Soc Am. 2000;108(2):790-802. [Crossref]  [PubMed] 
  21. Friesen LM, Shannon RV, Cruz RJ. Effects of stimulation rate on speech recognition with cochlear implants. Audiol Neurootol. 2005; 10(3):169-84. [Crossref]  [PubMed] 
  22. Buechner A, Frohne-Buechner C, Gaertner L, Lesinski-Schiedat A, Battmer RD, Lenarz T. : Evaluación del modo de alta resolución del advanced bionics. [Evaluation of advanced bionics high resolution mode]. International Journal of Audiology. 2006;45(7):407-16. [Crossref] 
  23. Weber BP, Lai WK, Dillier N, von Wallenberg EL, Killian MJ, Pesch J, et al. Performance and preference for ACE stimulation rates obtained with nucleus RP 8 and freedom system. Ear Hear. 2007;28(2 Suppl):46-S. [Crossref]  [PubMed] 
  24. MED-EL [İnternet]. © 2021 MED-EL Medical Electronics. Corporate information. Erişim linki: [Link]  (01.07.2020)
  25. American Speech-Language-Hearing Association [İnternet]. © 1997-2021 American Speech-Language-Hearing Association. [Erişim tarihi: Mart 2003]. Cochlear implants. Erişim linki: [Link] 
  26. Magnusson L. Comparison of the fine structure processing (FSP) strategy and the CIS strategy used in the MED-EL cochlear implant system: speech intelligibility and music sound quality. Int J Audiol. 2011;50(4):279-87. [Crossref]  [PubMed] 
  27. Niparko JK. The design of cochlear implants. Cochlear Implant Principles & Practices. 2nd ed. Philadelpiha: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2009. p.145-210. [Link] 
  28. Wolfe J. Cochlear implant signal coding strategies. Cochlear Implants: Audiological Management and Considerations for Implantable Hearing Devices. 1st ed. San Diego: Plural Publishing; 2020. p.229-56. [Link] 
  29. Helms J, Müller J, Schön F, Winkler F, Moser L, Shehata-Dieler W, et al. Comparison of the TEMPO+ ear-level speech processor and the cis pro+ body-worn processor in adult MED-EL cochlear implant users. ORL J Otorhinolaryngol Relat Spec. 2001;63(1):31-40. [PubMed] 
  30. Brickley, G., Boyd, P., Wyllie, F., O'Driscoll, M., Webster, D., & Nopp, P. (2005). Investigations into electrically evoked stapedius reflex measures and subjective loudness percepts in the MED‐EL COMBI 40+ cochlear implant. Cochlear implants international, 6(1), 31-42. [Crossref] 
  31. Plant K, Whitford L, Psarros C. Strategy comparison for Nucleus 24 recipients with a limited number of available electrodes. Cochlear White Paper, N94317F Iss1 Centennial (CO): Cochlear Americas. 2000. [Link] 
  32. Proops DW. The cochlear implant team. In: Cooper H, Craddock L. Cochlear Implants: A Practical Guide. 2nd ed. Philadelphia: Whurr Publishers; 2006. p.70-120. [Link] 
  33. Lorens A, Zgoda M, Obrycka A, Skarżynski H. Fine structure processing improves speech perception as well as objective and subjective benefits in pediatric MED-EL COMBI 40+ users. Int J Pediatr Otorhinolaryngol. 2010;74(12):1372-8. [Crossref]  [PubMed] 
  34. Müller J, Brill S, Hagen R, Moeltner A, Brockmeier SJ, Stark T, et al. Clinical trial results with the MED-EL fine structure processing coding strategy in experienced cochlear implant users. ORL J Otorhinolaryngol Relat Spec. 2012;74(4):185-98. [Crossref]  [PubMed] 
  35. Loizou PC. Introduction to cochlear implants. IEEE Eng Med Biol Mag. 1999;18(1):32-42. [Crossref]  [PubMed] 
  36. Koch DB, Osberger MJ, Segel P, Kessler D. HiResolution and conventional sound processing in the HiResolution bionic ear: using appropriate outcome measures to assess speech recognition ability. Audiol Neurootol. 2004;9(4):214-23. [Crossref]  [PubMed] 
  37. Hilbert D. Grundzuge einer allgemeinen Theorie der linearen Integralgleichungen [German]. Germany: B. G. Teubner Publishing; 1912. p.70-120.
  38. Smith ZM, Delgutte B, Oxenham AJ. Chimaeric sounds reveal dichotomies in auditory perception. Nature. 2002;7;416(6876):87-90. [Crossref]  [PubMed]  [PMC] 
  39. Xu L, Pfingst BE. Relative importance of temporal envelope and fine structure in lexical-tone perception. J Acoust Soc Am. 2003;114(6 Pt 1):3024-7. [Crossref]  [PubMed]  [PMC] 
  40. Riss D, Hamzavi JS, Blineder M, Honeder C, Ehrenreich I, Kaider A, et al. FS4, FS4-p, and FSP: a 4-month crossover study of 3 fine structure sound-coding strategies. Ear Hear. 2014;35(6):e272-81. [Crossref]  [PubMed] 
  41. Zierhofer CM, Schatzer R. Simultaneous intracochlear stimulation based on channel interaction compensation: analysis and first results. IEEE Trans Biomed Eng. 2008;55(7): 1907-16. [Crossref]  [PubMed] 
  42. Riss D, Hamzavi JS, Blineder M, Flak S, Baumgartner WD, Kaider A, et al. Effects of stimulation rate with the FS4 and HDCIS coding strategies in cochlear implant recipients. Otol Neurotol. 2016;37(7):882-8. [Crossref]  [PubMed] 
  43. Müller V, Klünter HD, Fürstenberg D, Walger M, Lang-Roth R. Comparison of the effects of two cochlear implant fine structure coding strategies on speech perception. Am J Audiol. 2020;8;29(2):226-35. [Crossref]  [PubMed] 
  44. Arnoldner C, Riss D, Brunner M, Durisin M, Baumgartner WD, Hamzavi JS. Speech and music perception with the new fine structure speech coding strategy: preliminary results. Acta Otolaryngol. 2007;127(12):1298-303. [Crossref]  [PubMed] 
  45. Riss D, Hamzavi JS, Katzinger M, Baumgartner WD, Kaider A, Gstoettner W, et al. Effects of fine structure and extended low frequencies in pediatric cochlear implant recipients. Int J Pediatr Otorhinolaryngol. 2011;75(4):573-8. [Crossref]  [PubMed] 
  46. Galindo J, Lassaletta L, Mora RP, Castro A, Bastarrica M, Gavilán J. Fine structure processing improves telephone speech perception in cochlear implant users. European Archives of Oto-Rhino-Laryngology. 2013; 270(4):1223-9. [Crossref] 
  47. Vermeire K, Punte AK, Van de Heyning P. Better speech recognition in noise with the fine structure processing coding strategy. ORL J Otorhinolaryngol Relat Spec. 2010;72(6):305-11. [Crossref]  [PubMed] 
  48. Riss D, Arnoldner C, Baumgartner WD, Kaider A, Hamzavi JS. A new fine structure speech coding strategy: speech perception at a reduced number of channels. Otol Neurotol. 2008;29(6):784-8. [Crossref]  [PubMed] 
  49. Riss D, Hamzavi JS, Selberherr A, Kaider A, Blineder M, Starlinger V, et al. Envelope versus fine structure speech coding strategy: a crossover study. Otol Neurotol. 2011;32(7): 1094-101. [Crossref]  [PubMed] 
  50. Dillon MT, Buss E, King ER, Deres EJ, Obarowski SN, Anderson ML, et al. Comparison of two cochlear implant coding strategies on speech perception. Cochlear Implants Int. 2016;17(6):263-70. [Crossref]  [PubMed]  [PMC] 
  51. Skinner MW, Holden LK, Whitford LA, Plant KL, Psarros C, Holden TA. Speech recognition with the nucleus 24 SPEAK, ACE, and CIS speech coding strategies in newly implanted adults. Ear Hear. 2002;23(3):207-23. [Crossref]  [PubMed] 
  52. Landsberger DM, Vermeire K, Claes A, Van Rompaey V, Van de Heyning P. Qualities of single electrode stimulation as a function of rate and place of stimulation with a cochlear implant. Ear Hear. 2016;37(3):e149-59. [Crossref]  [PubMed]  [PMC] 
  53. de Melo TM, Bevilacqua MC, Costa OA, Moret ALM. Influência da estratégia de processamento de sinal no desempenho auditivo. [Influence of signal processing strategy in auditory abilities]. Braz J Otorhinolaryngol. 2013;79(5): 629-35. [Crossref] 
  54. Wolfe J, Schafer EC. Basic terminology of cochlear implant programming. In: Wolfe J, Schafer EC, eds. Programming Cochlear Implants. 2nd ed. Köln: Plural Publishing; 2015. p.61-91. [Link] 
  55. Wilson, BS. Speech processing strategies. Cooper, H, Craddock, L. Cochlear implants: A practical guide. 2nd ed. London: John Wiley & Sons; 2006. p21-69. [Link] 
  56. Loizou PC, Stickney G, Mishra L, Assmann P. Comparison of speech processing strategies used in the Clarion implant processor. Ear Hear. 2003;24(1):12-9. [Crossref]  [PubMed] 
  57. Büchner A, Frohne-Büchner C, Battmer RD, Lenarz T. Two years of experience using stimulation rates between 800 and 5000 pps with the clarion CII implant. International Congress Series. 2004;1273(2):48-51. [Crossref] 
  58. Büchner A, Lenarz T, Boermans PP, Frijns JH, Mancini P, Filipo R, et al. Benefits of the HiRes 120 coding strategy combined with the Harmony processor in an adult European multicentre study. Acta Otolaryngol. 2012;132(2):179-87. [Crossref]  [PubMed] 
  59. Townshend B, Cotter N, Van Compernolle D, White R. Pitch perception by cochlear implant subjects. The Journal of the Acoustical Society of America. 1987;82(1):106-15. [Crossref] 
  60. Wilson B, Lawson D, Zerbi M, Finley C. Recent developments with the CIS strategies. Advances in Cochlear Implants. 1994:103-12. [Link] 
  61. Wolfe J, Schafer EC. Basic terminology of cochlear implant programming. Programming Cochlear Implants. 2nd ed. San Diego: Plural Publishing; 2015. p.61-91. [Link] 
  62. Demers L, Robichaud L, Gélinas I, Noreau L, Desrosiers J. Coping strategies and social participation in older adults. Gerontology. 2009;55(2):233-9. [Crossref]  [PubMed] 
  63. Choi CT, Lee YH. A review of stimulating strategies for cochlear implants. In: Umat C, ed. Cochlear Implant Research Updates. China: InTech; 2012. p.77-90. [Crossref] 
  64. Kirk KI, Choi S. Clinical Investigations of Cochlear Implant Performance. In: Niparko JK, ed. Cochlear Implants Principles & Practices. 2nd ed. Philadelphia: Wolters Kluwer Health; 2009:191-222. [Link] 
  65. Koch DB, Downing M, Osberger MJ, Litvak L. Using current steering to increase spectral resolution in CII and HiRes 90K users. Ear Hear. 2007;28(2 Suppl):38S-41S. [Crossref]  [PubMed] 
  66. Ambrosch P, Müller-Deile J, Aschendorff A, Laszig R, Boermans PP, Frijns J, et al. European adult multi-centre HiRes® 120 study--an update on 65 subjects. Cochlear Implants Int. 2010;11 Suppl 1:406-11. [Crossref]  [PubMed] 
  67. Park HJ, Lee SC, Chun YM, Lee JY. HiRes with fidelity 120 benefit in native speakers of Korean. Cochlear Implants Int. 2009;10 Suppl 1:85-8. [Crossref]  [PubMed] 
  68. Donaldson GS, Dawson PK, Borden LZ. Within-subjects comparison of the HiRes and Fidelity120 speech processing strategies: speech perception and its relation to place-pitch sensitivity. Ear Hear. 2011;32(2):238-50. [Crossref]  [PubMed]  [PMC] 
  69. Brown TT, Jernigan TL. Brain development during the preschool years. Neuropsychol Rev. 2012;22(4):313-33. [Crossref]  [PubMed]  [PMC] 
  70. Mancini P, Bosco E, D'agosta L, Traisci G, Nicastri M, Capelli G, et al. Implementation of perceptual channels in children implanted with a HiRes 90K device. Acta Otolaryngol. 2009;129(12):1442-50. [Crossref]  [PubMed] 
  71. Rozycka J, Attias J, Raveh E, Daykhes NA, Neumann K, Sainz M, et al. One-year follow-up results of young children switched-on with HiRes 120™. J Hear Sci. 2011;1(2):67-9. [Link] 
  72. Bosco E, Mancini P, D'Agosta L, Traisci G, D'Elia C, Filipo R. Speech perception in children using two generations of Advanced Bionics cochlear implants: three-year results. Adv Bionics ® Audit Res Bull. 2007:56-57. [Link] 
  73. Wolfe J, Schafer EC. Programming advanced bionics implants. Programming Cochlear Implants. 2nd ed. San Diego: Plural Publishing; 2015. p.129-65. [Link]